首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In literature, there are already well‐established thermal methods which allow for the estimation of fatigue limit, in particular for metallic materials such as austenitic steels. These methods are based on heat source generation analysis or on surface temperature evaluation of material subjected to different types of cyclic loading. General application of methodology found limitation in those cases in which temperature changes on material related to fatigue damage were very low and, furthermore, thermal methods require high‐performance equipment and a difficult setup. This is the case, for instance, with brittle materials (such as martensitic steels), welded joints and aluminium alloys. In this work, a new thermal method named Thermoelastic Phase Analysis is used to evaluate the fatigue limit of martensitic steels. This thermal method is based on an empirical approach. The main idea is that phase of thermoelastic response of the material subjected to fatigue loading is influenced by the presence of a heat source due to dissipative phenomena related to damage. Monitoring of the phase parameter provides a more stable setup and an independent means of identifying the fatigue limit of material. The method has also proven to be potentially one order of magnitude faster than traditional thermal methods.  相似文献   

2.
3.
Abstract

Over the past few years, car manufacturers have been considering ever higher service temperatures for the engine in order to comply with the constraints of depollution standards. The requirements in terms of exhaust gas temperature could easily reach and overtake the limits of common stainless steel grades used for such applications in the coming years.

A new ferritic stainless steel – named K44X – with increased high temperature resistance has therefore been developed to withstand service temperature up to 1000 °C. K44X belongs to EN 1.4521 and AISI 444 classifications and is composed of approximately 19% Cr, 2%Mo and 0.6% Nb. This specific composition leads to better mechanical properties, higher creep and fatigue resistance than EN 1.4509, while keeping comparable weldability and formability. Its coefficient of thermal expansion is lower in comparison to austenitic stainless steel grades and its resistance to cyclic oxidation is improved significantly.

High-temperature properties (mechanical properties, creep, cyclic oxidation resistance, and high cycle fatigue) of K44X are presented in this paper and compared with common ferritic and austenitic stainless steels used in the hot end of exhaust lines. A thermal fatigue test – designed to reproduce exhaust manifold service conditions – has also been carried out with the highest temperatures of the cycle in the range of 850–1000 °C. The results of these thermal fatigue tests were compared with the above-mentioned stainless steels. A thermal fatigue damage criterion was then identified based on these experimental results and using a cyclic behaviour law obtained from isothermal low cycle fatigue tests.  相似文献   

4.
Existing short fatigue crack models have been reviewed to determine the most suitable fatigue model to analyse the effect of the surface finish on the fatigue limit of Type 304 austenitic stainless steels. A mechanistic model firstly proposed by Navarro and Rios (N‐R model) was selected as the most suitable generic model, because the model can include the effects of surface finishing parameters such as surface roughness and residual stress depth profile on the fatigue limit. The N‐R model has been implemented for fatigue specimens with various surface finishing conditions, and the effect of the surface finish on the fatigue limit was simulated. The material/surface properties required for the implementation were fully characterized by experiments. The applicability of the model to this study was also discussed. It is concluded that a development of the model would be required for proper prediction of the surface effects on fatigue in austenitic stainless steels.  相似文献   

5.
In this paper, the study of the temperature variation during fatigue tests was carried out on different materials (steels and aluminium alloys). Tests were performed at ambient temperature using a piezoelectric fatigue system (20 kHz). The temperature field was measured on the surface of the specimen, by means of an infrared camera.
Just at the beginning of the test, it was observed that the temperature increased, followed by a stabilization which corresponds to the balance between dissipated energy associated with microplasticity and the energy lost by convection and radiation at the specimen surface and by conduction inside the specimen. At the crack initiation, the surface temperature suddenly increases (whatever the localization of the initiation), which allows the determination of the number of cycles at the crack initiation and the number of cycles devoted to the fatigue crack propagation. In the gigacycle fatigue domain, more than 92% of the total life is devoted to the initiation of the crack.
So, the study of the thermal dissipation during the test appears a promising method to improve the understanding of the damage and failure mechanism in fatigue and to determine the number of cycles at initiation.  相似文献   

6.
The objective of this study is to estimate fatigue life of irradiated austenitic stainless steels types 304, 304L, and 316, which are extensively used as structural alloys in the internal elements of nuclear reactors. These reactor components are typically subjected to a long-term exposure to irradiation at elevated temperature along with repeated loadings during operation. Additionally, it is known that neutron irradiation can cause the formation and growth of microscopic defects or swellings in the materials, which may have a potential to deteriorate the mechanical properties of the materials. In this study, uniaxial fatigue models were used to predict fatigue properties based only on simple monotonic properties including ultimate tensile strength and Brinell hardness. Two existing models, the Bäumel–Seeger uniform material law and the Roessle–Fatemi hardness method, were employed and extended to include the effects of test temperature, neutron irradiation fluence, irradiation-induced helium and irradiation-induced swellings on fatigue life of austenitic stainless steels. The proposed models provided reasonable fatigue life predictions compared with the experimental data for all selected materials.  相似文献   

7.
Thermal fatigue resistance of materials is an extremely important criterion for the long‐term durability and reliability performance of very high‐temperature components and systems, such as advanced auto engine and exhaust systems. There is a broad range of material choices for thermal fatigue resistance applications. The final selection of the materials depends on the balance of engineering performance of the materials and the cost. To optimize the thermal fatigue resistance and cost of those materials, a reliable testing procedure for material thermal fatigue characterization and a material evaluation/selection matrix must be established. In this paper, the V‐shape specimen testing method in evaluating thermal fatigue resistance performance is introduced first. The influence of several factors, such as the thickness of specimens, operating temperature and hold time, on the thermal fatigue resistance is experimentally investigated. Subsequently, the statistical and probabilistic characteristics of the thermal fatigue failure data are analysed to reveal the possible failure mechanisms. Finally, a general rational approach for thermal fatigue resistance characterization and ranking is demonstrated, and a simple parameter λ = f/, which combines the material strength, thermal conductivity and thermal expansion, is found to be the new breakthrough parameter, correlating to V‐shape thermal fatigue test results. Results on four currently used stainless steels verify the correlations and indicate the validity of this approach.  相似文献   

8.
Lean duplex stainless steels (LDSSs) with lower nickel and molybdenum are less susceptible to suffer spinodal decomposition than standard duplex stainless steels. It is the purpose of this work to study the effect of thermal embrittlement on the low cycle fatigue behaviour of 2 LDSSs with different Creq and Nieq. The correlation between the fatigue behaviour and the dislocation structure is attempted. Transmission electron microscopy was used to observe the dislocation microstructure. Additionally, STEM‐EDS technique in conjunction with Vickers microhardness measurements was used to characterize the amplitude of the spinodal decomposition. The results show that the LDSS with lower Creq and Nieq values exhibits improved fatigue properties in the as received and aged conditions. Furthermore, it is important to emphasize that with an adequate volume fraction of phases in LDSSs, the ageing treatment leads to an increase in strength without causing a great detriment in low cycle fatigue life.  相似文献   

9.
High nitrogen contents in solid solution as well as appropriate strengthening mechanisms in austenitic stainless steels can result in very high corrosion resistance. This is true in both air environment and in simulated human body fluids (corrosion fatigue). High cycle corrosion fatigue data are listed and compared with similar data for titanium base and cobalt base implant materials. Thus high nitrogen austenitic stainless steels are candidates to replace other stainless steels as implant materials.  相似文献   

10.
Abstract— It is shown that autofrettage at low temperatures is superior to autofrettage at room temperature in enhancing the fatigue resistance of thick-walled tubes against pulsating internal pressure. The physical reason is based on the well-known temperature dependence of the mechanical behaviour of metals and alloys which generally exhibit an enhancement of both the yield stress and strain hardening behaviour at lower temperatures. As a consequence, significantly larger compressive residual hoop stresses can be introduced during pressurization at low temperatures than at room temperature. Experimental data obtained on thick-walled tubes of the metastable austenitic stainless steel AISI 304 L which were subjected to pulsating internal pressure at room temperature after autofrettage at temperatures between-110°C and room temperature are presented. These data demonstrate convincingly the advantages offered by low-temperature autofrettage in enhancing both the fatigue life in the finite-life region and the fatigue endurance limit in comparison with autofrettage at room temperature. In conclusion, some specific materials requirements for optimum low-temperature autofrettage performance are discussed.  相似文献   

11.
The effect of hydrogen on the fatigue properties of alloys which are used in fuel cell (FC) systems has been investigated. In a typical FC system, various alloys are used in hydrogen environments and are subjected to cyclic loading due to pressurization, mechanical vibrations, etc. The materials investigated were three austenitic stainless steels (SUS304, SUS316 and SUS316L), one ferritic stainless steel (SUS405), one martensitic stainless steel (0.7C-13Cr), a Cr-Mo martensitic steel (SCM435) and two annealed medium-carbon steels (0.47 and 0.45%C). In order to simulate the pick-up of hydrogen in service, the specimens were charged with hydrogen. The fatigue crack growth behaviour of charged specimens of SUS304, SUS316, SUS316L and SUS405 was compared with that of specimens which had not been hydrogen-charged. The comparison showed that there was a degradation in fatigue crack growth resistance due to hydrogen in the case of SUS304 and SUS316 austenitic stainless steels. However, SUS316L and SUS405 showed little degradation due to hydrogen. A marked increase in the amount of martensitic transformation occurred in the hydrogen-charged SUS304 specimens compared to specimens without hydrogen charge. In case of SUS316L, little martensitic transformation occurred in either specimens with and without hydrogen charge. The results of S-N testing showed that in the case of the 0.7C–13Cr stainless steel and the Cr–Mo steel a marked decrease in fatigue resistance due to hydrogen occurred. In the case of the medium carbon steels hydrogen did not cause a reduction in fatigue behaviour. Examination of the slip band characteristics of a number of the alloys showed that slip was more localized in the case of hydrogen-charged specimens. Thus, it is presumed that a synergetic effect of hydrogen and martensitic structure enhances degradation of fatigue crack resistance.  相似文献   

12.
Tests carried out at room temperature on 316 L stainless steels with different nitrogen contents show that nitrogen improves the low cycle fatigue resistance of the materials. However, saturation occurs when nitrogen content is above 0.12 weight per cent. The microstructural aspect is also studied; the deformation is more difficult and more planar when nitrogen is present. Moreover, nitrogen delays the formation of cells. A single relation, derived from the Manson-Coffin formula, describes the low cycle fatigue behaviour of these steels by taking into account plastic strain range and nitrogen content.  相似文献   

13.
The present paper shows several important phenomena obtained by investigations of the effect of hydrogen on fatigue crack growth behaviour, including the measurement of the hydrogen content in various materials such as low-carbon, Cr-Mo and stainless steels. Particularly important phenomena are the localization of fatigue slip bands, strain-induced martensite in Types 304, 316 and even 316L, and also strong frequency effects on fatigue crack growth rates. For example, with a decrease in frequency of fatigue loading down to the level of 0.2 Hz, the fatigue crack growth rate of a Cr-Mo steel is accelerated by 10-30 times. The same phenomenon also occurs even in austenitic stainless steels at the frequency of the level of 0.001 Hz. Striation morphology is also influenced by hydrogen. It has been revealed by re-analysing the results of the authors’ separately published reports that this basic hydrogen embrittlement mechanism is essentially the same throughout all the materials, i.e. low-carbon, Cr-Mo and stainless steels. Thus, the coupled effects of hydrogen content, hydrogen diffusion coefficient (for BCC or FCC), load frequency, localization of fatigue slip bands and strain-induced martensite must be always considered in fatigue test and analysis of hydrogen embrittlement.  相似文献   

14.
Notwithstanding the wide use of PVD coated components, not only in fields where tribological behaviour is important and well assessed, fatigue behaviour is still an object of research in applications where enhanced fatigue resistance is required. The aim of this paper is to analyse fatigue crack growth mechanisms and to relate their nucleation sites to the microstructure and to residual stress data. Two structural steels were used as the substrate (H11 tool steel grade and 2205 duplex stainless steel grade), while a monolayer of CrN, 5 μm deep, was deposed as a coating. Four‐point bending fatigue tests were carried out in order to obtain the bending fatigue limit. Experimental results obtained by scanning electron microscopy analyses, residual stresses measurements and hardness evaluations carried out using a nanoindenter device were considered to explain the fatigue mechanisms involving a PVD coated part in terms both of nucleation site and crack growth process.  相似文献   

15.
Abstract In order to understand the fatigue behaviour of HSLA pipeline steels under lowtemperature Arctic environments, a study has been undertaken to evaluate the influence of low-temperature on the high cycle fatigue behaviour of two candidate steels, namely (i) Cb Mo "Acicular Ferrite" steel developed by Climax-Ipsco and (ii) high-Cb HSLA steel developed by the Molybdenum Corporation of America. Results indicate that both the steels have reasonably good fatigue properties and that their fracture morphology and fatigue-induced dislocation substructures are quite complex. Design data based on room temperature fatigue properties would be adequate for the low-temperature application of these steels.  相似文献   

16.
Abstract— Fatigue tests conducted under fully reversed cyclic torsion, with and without superimposed axial static tension/compression loads, were carried out using hour-glass smooth specimens in laboratory air. A high strength spring steel and a 316L stainless steel, were employed to evaluate the effects of mean stress on fatigue performance. Experimental test results show that a biaxial tensile/compressive mean stress had no influence on the cyclic stress-strain response in both materials. However a biaxial tensile mean stress was found to be detrimental to fatigue life of the high strength spring steel but had no effect on the total fatigue life of 316L stainless steel. A compressive mean stress was found to be beneficial to the life of both steels. The fatigue behaviour of the two materials was investigated by experimental observations and the application of theoretical analyses of short crack growth behaviour. Based upon the analysis of surface acetate replicas it has been found that fatigue crack growth is material/stress-state dependent. A biaxial tensile static stress promoted a change in the direction of the Stage I (mode II) crack from the longitudinal direction to a plane normal to the specimen axis in the high strength steel but not in the stainless steel. Consequently a different growth behaviour of Stage I (mode II) cracks was observed for the two materials. The effect of a biaxial mean stress on fatigue crack growth behaviour of the two materials is analysed and described in some detail.  相似文献   

17.
The ferrite phase of cast duplex stainless steels becomes embrittled after thermal ageing, leading to a significant decrease in fracture properties. In the present paper, the influence of ageing and solidification structure on the fatigue crack growth rates (FCGRs) and on the fatigue crack growth mechanisms in a cast duplex stainless steel is studied. FCGRs measured at room temperature increase slightly after ageing at 400 °C, due to ferrite cleavage and to the resulting irregular shape of the crack front. The crack propagates without any preferential path by successive ruptures of ferrite and austenite phases. The macroscopic crack propagation plane depends on the crystallographic orientation of the ferrite grain. Secondary cracks can appear due to the complex solidification structure. This in turn influences the FCGR. The fatigue crack closure level decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening of these materials.  相似文献   

18.
Abstract— Fatigue tests of non-load carrying carbon and stainless steel fillet welds have been performed using spectrum loading typical for rail vehicles. The proportion of spectrum cycles exceeding the constant amplitude fatigue limit ranged between 0.86% and 100% and cycles to failure ranged from 4.2 ± 105 to 2.1 ± 107. For the longest tests, the majority of fatigue damage was contributed by cycles with stress ranges less than the constant amplitude fatigue limit. For the carbon steel welds a significant portion of fatigue damage was produced by cycles with stress ranges less than 50% of the fatigue limit but only a small fraction of damage was produced by cycles of this size for the stainless steel welds. The carbon steel welds had slightly better fatigue strength at lives less than 107 cycles but results suggest that stainless steels may have superior long-life variable amplitude fatigue strength when a greater portion of life is spent in the early stages of crack nucleation and growth.  相似文献   

19.
Abstract —Low-cycle fatigue properties were investigated on four carbon steels and five low alloy steels specified in JIS (Japanese Industrial Standard) for machine structural use, which are the most commonly used in Japan. Several different heats from each of several representative manufacturers were sampled so as to represent the average fatigue characteristics of current materials. The cyclic deformation behaviour of material was denned by comparing the monotonie yield stress on the extrapolated tensile work hardening curve with the cyclic yield stress in the cyclic stress-strain curve determined by incremental step test. The normalized ferrite-pearlitic steels cyclically hardened, while the quench-tempered martensitic were cyclically stable or softened. The S–N relations derived from the strain-controlled low-cycle tests were compared with the results obtained by load-controlled high-cycle tests. The extrapolated S–N curves based on the cyclic stress-strain curve predicted the fatigue strength in the high-cycle range to be stronger for cyclic-hardening steels, but weaker for cyclic-softening steels. The predicted S–N curves for stable steels coincided with the high cycle test data. The fatigue limit had a proportional relationship with cyclic yield stress, slightly depending on the cyclic deformation behaviour. On the other hand, the cyclic yield stress was found to exhibit a very good linear correlation with the monotonie tensile strength, independent of cyclic deformation behaviour. This explains the empirical law that the fatigue limit is approximately proportional to the tensile strength.  相似文献   

20.
FATIGUE DESIGN OF SPOT-WELDED AUSTENITIC AND DUPLEX STAINLESS SHEET STEELS   总被引:1,自引:1,他引:0  
The fatigue strength of spot-welded stainless sheet steels has been investigated. The main part of the fatigue tests was performed on a cold rolled austenitic stainless sheet steel (AISI304) in air at ambient temperature. For comparison, a duplex stainless steel (SAF2304) of similar yield strength as AISI304 was also incorporated into the test programme. Since the fatigue strength of spot-welded joints depends on the mode of loading, both shear-loaded and peel-loaded joints were tested. The fatigue strength of the spot-welded stainless steels was found to decrease with decreasing sheet thickness. Furthermore, the fatigue strength for peel-loaded joints is lower than that of shear-loaded joint for sheets of equal thickness.
The local loading conditions at the weld edge have been analysed in terms of finite element calculations and fracture mechanics. A design parameter derived from a fracture mechanics analysis was defined for spot-welded stainless sheet steels. It was shown to predict the fatigue life of the present steels and joint configurations in a satisfactory way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号