首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Bi2Fe4O9 powders were synthesized by a sol-gel process using polyvinyl alcohol (PVA) as a complexing agent. Differential scanning calorimetry (DSC), thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Field emission scanning electron microscope (FSEM) techniques were used to characterize precursor and derived oxide powders. The effect of the ratios of positively charged valences to hydroxyl groups of PVA (Mn+/-OH) on the formation of Bi2Fe4O9 was investigated. XRD analysis showed that single-phase Bi2Fe4O9 was obtained from the Mn+/-OH = 2:1 and Mn+/-OH = 1:1 precursors at the temperature of 700 °C. For the precursor with Mn+/-OH = 4:1, pure Bi2Fe4O9 formed at the temperature of 800 °C. Bi2Fe4O9 powders clacined at 700 °C from Mn+/-OH = 2:1 precursor shows weak ferromagnetism.  相似文献   

2.
In this study, a pure orthorhombic perovskite SrCe0.95Yb0.05O3−α (SCYb) ceramic powder was prepared using a chelated water-soluble complex method at relatively low temperatures. Common chelating ligands such as citric acid and EDTA were employed for the synthesis of complex-based precursors, followed by thermal decomposition of the precursors at high temperatures. Thermal behaviour, crystal phases, and structures of the prepared ceramic powders were characterised by TGA/DTA, XRD and SEM techniques, respectively. Clean and single-phase SCYb submicron-sized powders were obtained after sintering at a temperature of 1000 °C for 4 h. Gas-tight hollow fibre having a maximum bending strength of 60 MPa have been fabricated from the SCYb powders synthesised from the chelated water-soluble complex method.  相似文献   

3.
The microstructural and luminescent properties of H1.77[Sr0.8Bi0.21Ta2O7] powders under different dehydrating conditions were investigated. The powders were obtained by protonating Bi2SrTa2O9 powders in 3 M aqueous HCl solution, and were dehydrated by a post-annealing in air from 250 to 700 °C. The photoluminescence was enhanced for all dehydrated powders, especially for the sample annealed at 400 °C. The thermogravimetric analysis showed that there is an obvious dehydration temperature range from 200 to 400 °C, which was corresponding to the changing of the microstructure and photoluminescence in the same temperature range. The mechanism behind the experimental results was discussed.  相似文献   

4.
(1 − x)Ca2/5Sm2/5TiO3-xLi1/2Nd1/2TiO3 (CSLNT) ceramic powder was prepared by a liquid mixing method using ethylenediaminetetraacetic acid (EDTA) as the chelating agent. TG, DTA, XRD and TEM characterized the precursors and derived oxide powders. When x = 0.3, perovskite CSLNT was synthesized at 1000 °C for 3 h in air. The CSLNT (x = 0.3) ceramics sintered at 1200 °C for 3 h show excellent microwave dielectric properties of ?r = 99, Qf = 6200 GHz and τf = 9 × 10−6 °C−1.  相似文献   

5.
Hierarchical Bi2O3 spheres assembled from nanosheets with nanopore structure have been successfully synthesized by thermal decomposition of the precursor at 400 °C for 3 h in air, which was prepared using Bi(NO3)3·5H2O and poly(vinylpyrrolidone) (PVP) by a microwave-assisted heating method in ethylene glycol (EG) at 150 °C for 10 min. The morphology of Bi2O3 is similar to that of the precursor. The products were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TG) and differential scanning calorimetric analysis (DSC). XRD pattern showed that the product had a high degree of crystallinity. FE-SEM micrograph indicated that hierarchical Bi2O3 spheres had sizes around 10 μm.  相似文献   

6.
Hydrothermal process was successfully used to synthesize Fe3O4 powder using ferrous chloride (FeCl2) and diamine hydrate (H4N2·H2O) as starting materials by carefully controlling the reaction conditions. The as-prepared Fe3O4 sample was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and its magnetic properties were evaluated on a vibrating sample magnetometer (VSM). The nanoscale (40 nm) Fe3O4 powder obtained at 140 °C for 6 h possessed a saturation magnetization of 85.8 emu/g, a little lower than that of the correspondent bulk Fe3O4 (92 emu/g). It is suggested that the well-crystallized Fe3O4 grains formed under appropriate hydrothermal conditions should be responsible for the increased saturation magnetization in nanosized Fe3O4.  相似文献   

7.
A nanocrystalline La2Mo2O9 powder was synthesized via the pyrolysis of polyacrylate salt precursor prepared by an in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursor was studied by thermal (TG/DTA) analysis. The obtained product was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis. The results revealed that the average particle size is ∼25 nm for La2Mo2O9 with good crystallinity. The synthesized nanocrystalline La2Mo2O9 powder showed good sinterability and reached ∼99% of theoretical density when sintered at 800 °C for 4 h. The La2Mo2O9 sample sintered at 800 °C, yield good microstructure with improved conductivity value of about 0.12 S/cm at 800 °C.  相似文献   

8.
The fine powders of Bi3.25La0.75Ti3O12 (BLT) were prepared by coprecipitaton method in aqueous medium at low temperature. The differential thermal analysis (DTA), thermo-gravimetric analysis (TG) and X-ray diffraction (XRD) were employed to evaluate the phase formation of BLT and TEM was used to characterize and observe the particle size and morphology of BLT powder obtained. The results show that the bismuth layer perovskite phase of BLT can begin to form at as low as 500 °C by the coprecipitation method. When the precipitates obtained were calcined at 600 °C for 2 h, the mono-phase and perfect BLT powder was synthesized. The BLT powder obtained consists of irregular or plate-like particles which are less than about 100 nm and is nearly aggregate free.  相似文献   

9.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

10.
A thermal polymerization route was adopted to synthesize layered LiNi1/3Co1/3Mn1/3O2 materials. After annealing the polymer gel containing metal salts at different temperatures from 850 to 1000 °C for different time between 6 and 25 h, powders of pure α-NaFeO2 phase were obtained. The crystal structure, morphology and electrochemical properties of the products were investigated by XRD, SEM, electrochemical cell cycling and AC impedance spectroscopy. It is found that the powder annealed at 950 °C for 15 h shows the best electrochemical property with the first specific discharge capacity of 188 mAh/g at C/10 and 87% retention after 100 cycles. It exhibits good rate capability with the specific capacity of 169 mAh/g at 1 C and 110 mAh/g at 6 C. Adopting a slowly cooling procedure during the powder annealing can improve the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 powder.  相似文献   

11.
Nanocrystalline MgAl2O4 spinel powder was synthesized using metal nitrates and a polymer matrix precursor composed of sucrose and polyvinyl alcohol (PVA). The precursor and the calcined powders were characterized by simultaneous thermal analysis (STA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to XRD results, the inceptive formation temperature of spinel via this technique was between 600 and 700 °C. The calcined powder at 800 °C for 2 h has faced shaped morphology and its crystallite size is in the range of 8-12 nm. Further studies also showed that the amount of polymeric matrix to metal ions has significant influence on the crystallite size of synthesized magnesium aluminate spinel powder.  相似文献   

12.
Pb2Fe2O5 (PFO) powders in monoclinic structure have been synthesized using lead acetate in glycerin and ferric acetylacetonate as the precursor. The powders were pressed into pellets, which were sintered into ceramics at 800 °C for 1 h. The morphology and structure have been determined by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Polarization was observed in Pb2Fe2O5 ceramics at room temperature, exhibiting a clear ferroelectric hysteresis loop. The remanent polarization of Pb2Fe2O5 ceramic is estimated to be Pr ∼ 0.22 μC/cm2. The origin of the polarization may be attributed to the off-centers of shifted Pb2+ ions as well as the FeO6 octahedra in the perovskite-based structure of Pb2Fe2O5. Magnetic hysteresis loop was also observed at room temperature. The Pb2Fe2O5 ceramic shows coexistence of ferroelectricity and ferromagnetism. It provides a new field of research for complex oxides with multiferroic properties.  相似文献   

13.
The thermal analysis of Fe8(OOH)16Cl1.3 (Akaganeite-M) nanospindles prepared by the hydrolysis of FeCl3 solutions are determined by thermogravimetric analyses and differential scanning calorimetry (TG/DSC), in conjunction with field-emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD). Different products are formed after Fe8(OOH)16Cl1.3 nanospindles are calcined at different temperatures for 30 min in N2 atmosphere: Fe1.833(OH)0.5O2.5 and magnetite obtained at 250 °C; pure magnetite (Fe3O4) obtained at 630 °C; and magnetite containing some iron nitrides (Fe2N and Fe4N) obtained at 800 °C. The calcination of Fe8(OOH)16Cl1.3 provides a new method to prepare pure magnetite.  相似文献   

14.
Superfine powder SrLu2O4:Eu3+ was synthesized with a precursor prepared by an EDTA - sol-gel method at relatively low temperature using metal nitrate and EDTA as starting materials. The heat decomposition mechanism of the precursor, formation process of SrLu2O4:Eu3+and the properties of the particles were investigated by thermo-gravimetric (TG) - differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) analyses. The results show that pure SrLu2O4:Eu3+ superfine powder has been produced after the precursor was calcinated at 900 °C for 2 h and has an elliptical shape and an average diameter of 80-100 nm. Upon excitation with 250 nm light, all the SrLu2O4:Eu3+ powders show red and orange emissions due to the 4f-4f transitions of Eu3+ ions. The highest photoluminescence intensity at 610 nm was found at a content of about 6 mol% Eu3+. Splitting of the 5D0-7F1 emission transition revealed that the Eu3+ ions occupied two nonequivalent sites in the crystallite by substituting Lu3+ ions.  相似文献   

15.
Dense BiFeO3 ceramics were prepared by a novel spark plasma sintering (SPS) technique. The sintering was conducted at temperatures ranging from 675 to 750 °C under 70 MPa pressure. A bulk density value up to 96% of theoretical density was achieved in the process. This contrast to around 90% of the theoretical density achieved by conventional sintering at around 830 °C. It was found that the tendency to form unwanted Bi2Fe4O9 phase is higher at a high sintering temperature for SPS. The dielectric and ferroelectric properties also improved (with respect to conventionally sintered sample) for spark plasma-sintered samples.  相似文献   

16.
Well-crystallized birnessite sheets containing K+ in the interlayers have been prepared using KMnO4, ethylene glycol and KOH by microwave heating at 90 °C for 10 min. Ethylene glycol was used as a reducing agent. The effect of KOH concentration on the formation of birnessite was studied. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG), differential scanning calorimetric analysis (DSC) and Fourier transform infrared (FTIR). Birnessites were converted to cryptomelane upon heating at 400-800 °C and completely collapsed to form Mn3O4 at 1000 °C.  相似文献   

17.
Nano-sized BaNd2Ti5O14 (BNT) powders were prepared by spray pyrolysis from solutions containing ethylenediaminetetraacetic acid and citric acid. Treatment at temperatures ≥900 °C and subsequent milling resulted in nanoparticle powders with orthorhombic crystal structures. The mean particle size of the powder post-treated at 1000 °C was 160 nm. Nano-sized Bi2O3–B2O3–ZnO–SiO2 glass powder with 33 nm average particle size was prepared by flame spray pyrolysis and used as a sintering agent for the BNT. BNT pellets sintered at 1100 °C without the glass had porous structures and fine grain sizes. Those similarly sintered with the glass had denser structures and larger grains.  相似文献   

18.
Nano-sized Sr0.5Ba0.5Nb2O6 (SBN50) ceramic powders have been synthesized by an aqueous organic gel route. Homogeneous Sr-Ba-Nb precursor gels are prepared with Ba-EDTA, Sr-EDTA, and Nb-citrate complex as source of Sr, Ba, and Nb, respectively. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used as the chelating agents. The structural variation of the SBN powder with annealing temperature was studied by TG-DTA, FT-IR and XRD. The precursor gel on calcination at 800 °C for 2 h produces a pure tungsten bronze SBN phase and the corresponding average particle size is 30-50 nm. The influences of the pH and the molar ratio of citric acid:Nb cation on the formation of homogeneous Sr-Ba-Nb precursor gels were also studied. The results show that a homogeneous Sr-Ba-Nb precursor gel with no precipitate is formed at pH 8 and the optimum molar ratio of citric acid and the metal cations is 3:1.  相似文献   

19.
Bi2O4−x, a Bi mixed-valence phase was prepared at 95 °C, by a precipitation process, in a basic medium with a highly oxidizing K2S2O8/Na2S2O8. This phase has a low thermal stability as it decomposes below 400 °C in a multiple step process by some O2 losses prior to finally transforming into γ-Bi2O3. The as-prepared powders are 50-60 nm in size with a narrow size distribution. Optical spectra of Bi2O4−x exhibit a broad absorption band with a band gap of ∼1.4 eV as compared to 2.61 eV for Bi2O3. The composition of this non-stoichiometric phase, which crystallizes in cubic fluorite related structure with a cell parameter of 5.538(3) Å, is Bi2O3.65 ± 0.10.  相似文献   

20.
T.T. Carvalho 《Materials Letters》2008,62(24):3984-3986
Ceramic BiFeO3 samples were prepared by the sol gel combustion method using urea as fuel. The obtain powders were thermal treated at different temperatures (300-840  °C) and times (1-64  h) to investigate the best synthesis conditions of the material. The resulting materials were analysed by TGA, FTIR, SEM/EDS and XRD. Rietveld analysis was applied to the diffraction data. The temperature and time of the heat treatment are critical for a high BiFeO3 phase content. Thermal treatment of 1  h at 600  °C yielded 99% molar of the BiFeO3 phase with a mean particle size of 120  nm. Upper or lower calcinations temperatures yielded higher content of the secondary phases Bi2Fe4O9 and Bi25FeO39. Further heat treatment in air or in argon, up to 64  h, induces a decomposition of the BiFeO3 phase according to the reaction 49 BiFeO3 BiFeO3 → 12 Bi2Fe4O9 + Bi25FeO39 pointing out that BiFeO3 is not thermodynamically stable at 600  °C. The BiFeO3 decomposition follows Avrami-Erofeev law with a slope of 1 indicating a one-dimensional kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号