首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 902 毫秒
1.
Currently, in North America, the threshold crack‐growth regime is experimentally defined by using ASTM Standard E647, which has been shown in many cases to exhibit anomalies due to the load‐reduction (LR) test method. The test method has been shown to induce remote closure, which prematurely slows down crack growth and produces an abnormally high threshold. In this paper, the fatigue‐crack growth rate properties in the threshold and near‐threshold regimes for a titanium alloy, Ti‐6Al‐4V (STOA), are determined by using the LR test method and an improved test method. The improved method uses ‘compression–compression’ precracking, as developed by Pippan, Topper and others, to provide fatigue‐crack‐growth rate data under constant‐amplitude loading in the near‐threshold regime, without load‐history effects. Tests were conducted over a wide range in stress ratios (R = 0.1–0.7) on compact C(T) specimens for three different widths (25, 51 and 76 mm). The slitting method was used on 51 mm C(T) specimens to confirm that the material did not contain significant levels of residual stresses from forming and/or machining. A crack‐mouth‐opening‐displacement gage was used to monitor crack growth. Data from the ASTM LR method gave near‐threshold values that were found to be dependent upon the specimen width. However, data from the compression precracking constant amplitude (CPCA) loading method gave near‐threshold data independent of specimen width. A crack‐closure analysis was performed for both the LR and CPCA data, to correlate data at the various stress ratios. The CPCA data correlated well with the effective stress‐intensity factor range against rate relation, whereas the LR data exhibited significant threshold fanning with both stress ratio and specimen width.  相似文献   

2.
Fatigue crack growth rate properties are typically determined by experimental methods in accordance with ASTM Standard E647. These traditional methods use standard notched specimens that are precracked under cyclic tensile loads before the main test. The data that are produced using this approach have been demonstrated elsewhere to be potentially adversely affected by the test method, particularly in the threshold region where load reduction (LR) methods are also required. Coarse‐grained materials that exhibit rough and tortuous fatigue surfaces have been observed to be strongly affected by the tensile precracking and LR, in part because the anomalies caused by crack closure and roughness‐induced closure become more important. The focus of the work reported in this paper was to further develop methods to determine more accurate fatigue crack growth rate properties from threshold through to fracture for coarse‐grained, β‐annealed, titanium alloy Ti‐6Al‐4V extra low interstitial thick plate material. A particular emphasis was put upon the threshold and near threshold region, which is of strong importance in the overall fatigue life of components. New approaches that differ from the ASTM Standard included compression precracking, LR starting from a lower load level and continuing the test beyond rates where crack growth would otherwise be considered below threshold. For the threshold regime, two LR methods were also investigated: the ASTM method and a method where the load is reduced with crack growth such that the crack mouth opening displacement is held constant, in an attempt to avoid remote closure. Constant amplitude fatigue crack growth rate data were produced from threshold to fracture for the titanium alloy at a variety of stress ratios. Spike overload tests were also conducted These data were then used to develop an improved analytical model to predict crack growth under spectrum loading and the predictions were found to correlate well with test results.  相似文献   

3.
Fatigue‐crack‐growth tests were conducted on compact, C(T), specimens made of D16Cz aluminum alloy. Constant‐amplitude tests were conducted over a range of stress ratios (R = Pmin/Pmax = 0.1 to 0.75). Comparisons were made between test data from middle‐crack tension, M(T), specimens from the literature and C(T) specimens. A crack‐closure analysis was used to collapse the rate data from both specimen types into a fairly narrow band over many orders of magnitude in rates using proper constraint factors. Constraint factors were established from single‐spike overload and constant‐amplitude tests. The life‐prediction code, FASTRAN, which is based on the strip‐yield‐model concept, was used to calculate the crack‐length‐against‐cycles under constant‐amplitude (CA) loading and the single‐spike overload (OL) tests; and to predict crack growth under variable‐amplitude (VA) loading on M(T) specimens and simulated aircraft loading spectrum tests on both specimen types. The calculated crack‐growth lives under CA and the OL tests were generally within ±20 % of the test results, the predicted crack‐growth lives for the VA and Mini‐Falstaff tests on the M(T) specimens were short by 30 to 45 %, while the Mini‐Falstaff+ results on the C(T) specimens were within 10 %. Issues on the crack‐starter notch effects under spectrum loading are discussed, and recommendations are suggested on avoiding these notch effects.  相似文献   

4.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

5.
Fatigue-crack-growth tests were conducted on compact, C(T), specimens made of D16Cz (clad) aluminum alloy under constant-amplitude loading, a single spike overload, and simulated aircraft spectrum loading. Constant-amplitude tests were conducted to generate crack-growth-rate data from threshold to near fracture over a wide range of stress ratios (R = Pmin/Pmax = 0.1–0.75) using the new compression pre-cracking test methods. Comparisons were made between test data generated on the C(T) specimens with test data from the literature on middle-crack-tension, M(T), specimens machined from the same sheet. A crack-closure analysis was used to collapse the rate data from both specimen types into a narrow band over many orders of magnitude in rates using proper constraint factors. The constraint factors were established from constant-amplitude (CA) and single-spike overload tests. The life-prediction code, FASTRAN, which is based on the strip-yield model concept, was used to calculate crack-length-against-cycles under CA loading and a single-spike overload (OL) test, and to predict crack growth under simulated aircraft spectrum loading tests on C(T) specimens. The calculated crack-growth lives under CA loading were generally within about ±25% of the test results, but slower crack growth under the double-shear fatigue mode, unlike the single-shear mode (45o slant crack growth), may be the reason for some of the larger differences. The predicted results under the single-spike overload and the Mini-Falstaff+ spectrum were within 10% of the test data.  相似文献   

6.
Fatigue damage characteristics of aluminium alloy under complex biaxial loads such as in‐phase and out‐of‐phase loading conditions and different biaxiality ratios have been investigated. The effects of microscale phenomena on macroscale crack growth were studied to develop an in‐depth understanding of crack nucleation and growth. Material characterization was conducted to study the microstructure variability. Scanning electron microscopy was used to identify the second phase particles, and energy dispersive X‐ray spectroscopy was performed to analyse their phases and elements. Extensive quasi‐static and fatigue tests were conducted on Al7075‐T651 cruciform specimens over a wide range of load ratios and phases. Detailed fractography analysis was conducted to understand the crack growth behaviour observed during the fatigue tests. Significant differences in crack initiation and propagation behaviour were observed when a phase difference was applied. Primarily, crack retardation and splitting were observed because of the constantly varying mode mixity caused by phase difference. The crack growth behaviour and fatigue lives under out‐of‐phase loading were compared with those under in‐phase loading to understand the effect of mixed‐mode fracture.  相似文献   

7.
Some of the fatigue tests performed using the standard compact tension (CT) and a non‐standard specimen made of rolled 7075 aluminium alloy exhibit fatigue crack growth (FCG) lagging in a small region along the crack front. Through‐thickness microstructural evaluation shows that material grains in this region did not flatten as much as other regions. In the non‐standard specimen, surface cracks are either grown under fatigue loading or broken under monotonically increasing quasi‐static loads at different crack sizes. The aforementioned lagging also exists in a narrow region of 3‐D FCG for specimens with microstructural through‐thickness non‐uniformity. A more important feature for this type of specimen with surface crack is the deflection of fast fracture direction into the grain interfaces, namely from L‐T orientation to S‐L and S‐T directions. It is proved that this is due to significant levels of second principal stresses near the free surface for small cracks and lower fracture toughness of the material in S‐L and S‐T directions.  相似文献   

8.
For many years, a two‐parameter fracture criterion (TPFC) has been used to correlate and predict failure loads on cracked metallic fracture specimens. The current study was conducted to evaluate the use of the TPFC on a high‐strength aluminium alloy, using elastic‐plastic finite‐element (FE) analyses with the critical crack‐tip‐opening angle (CTOA) fracture criterion. In 1966, Forman generated fracture data on middle‐crack tension, M(T), specimens made of thin‐sheet 7075‐T6 aluminium alloy, which is a quasi‐brittle material. The fracture data included a wide range of specimen half‐widths (w) ranging from 38 to 305 mm. A two‐dimensional FE analysis code (ZIP2D) with a “plane‐strain core” option was used to model the fracture process with a critical CTOA chosen to fit the M(T) test data. Fracture simulations were then conducted on other M(T), single‐edge‐crack tension, SE(T), and bend, SE(B), specimens over a wide range in widths (w = 19‐610 mm). No test data were available on the SE‐type specimens. The results supported the TPFC equation for net‐section stresses less than the material proportional limit. However, some discrepancies in the FE fracture simulations results were observed among the numerical analyses made on the three specimen types. Thus, more research is needed to improve the transferability of the TPFC from the M(T) specimen to both the SE(T) and SE(B) specimens for quasi‐brittle materials.  相似文献   

9.
A numerical investigation of the influence of specimen size on creep crack growth in cross‐weld CT specimens with material properties of 2.25Cr1Mo at 550 °C is performed. A three‐dimensional large strain and large displacement finite element study is carried out, where the material properties and specimen size are varied under constant load for a total of eight different configurations. The load level is chosen such that the stress intensity factor becomes 20 MPa √m regardless of specimen size. The creep crack growth rate is calculated using a creep ductility‐based damage model, in which the creep strain rate ahead of the crack tip perpendicular to the crack plane is integrated taking the degree of constraint into account. Although the constraint ahead of the crack tip is higher for the larger specimens, the results show that the creep crack growth (CCG) rate is higher for the smaller specimens than for the larger ones. This is due to much higher creep strain rates ahead of the crack tip for the smaller specimens. If, on the other hand, the CCG rate is evaluated under a constant C * condition, the creep crack growth rate is found to be higher for the larger specimens, except when the crack is located in a HAZ embedded in a material with a lower minimum creep strain rate; then, the creep crack growth rate is predicted to be higher for the smaller specimen. In view of these results, it is obvious that the size effect needs to be considered in assessments of defected welded components using results from CCG testing of cross‐weld CT specimens.  相似文献   

10.
Based on extensive three‐dimensional finite element analyses, the unified characterization parameter Ac of in‐plane and out‐of‐plane creep constraint based on crack‐tip equivalent creep strain for three specimen geometries (C(T), SEN(T) and M(T)) were quantified for 316H steel at 550 °C and steady‐state creep. The distributions of the parameter Ac along crack fronts (specimen thickness) were calculated, and its capability and applicability for characterizing a wide range of in‐plane and out‐of‐plane creep constraints in different specimen geometries have been comparatively analysed with the constraint parameters based on crack‐tip stress fields (namely R*, h and TZ). The results show that the parameter Ac in the centre region of all specimens appears uniform distribution and lower value (higher constraint), and in the region near free surface it shows protuberant distribution and higher value (lower constraint). The parameter Ac can simultaneously and effectively characterize a wide range of in‐plane and out‐of‐plane creep constraints, while the parameters R*, h and TZ based on crack‐tip stress fields cannot achieve this. The different capabilities of these parameters for characterizing in‐plane and out‐of‐plane creep constraints originate from their underlying theories. The parameter Ac may be useful for accurately characterizing the overall constraint level composed of in‐plane and out‐of‐plane constraints in actual high‐temperature components, and it may be used in creep life assessments for improving accuracy.  相似文献   

11.
In previous work, fatigue-crack-growth tests were conducted on middle-crack tension, M(T), and compact, C(T), specimens made from the same D16Cz (clad) aluminum alloy sheet. These tests were conducted over a wide range of stress ratios (R = Pmin/Pmax = −0.5 to 0.75) to generate crack-growth-rate data from threshold to near fracture. These tests were used to generate the effective stress-intensity factor range (ΔKeff) against rate curve using a crack-closure model. The analyses collapsed the rate data from both specimen types into a fairly narrow band over many orders of magnitude in rates using proper constraint factors. Constraint factors were established from single-spike overload and the constant-amplitude tests. Herein, the life-prediction code, FASTRAN, which is based on the strip-yield model concept, was used to calculate the crack-length-against-cycles under constant-amplitude (CA) loading and the single-spike overload (OL) tests; and to predict crack growth under variable-amplitude (VA) loading and simulated aircraft loading spectrum tests on the M(T) specimens. The calculated crack-growth lives under CA and an OL tests were generally within ±20% of the test results, but slower crack growth under the double-shear fatigue mode, rather than single shear, may be the reason for some of the larger differences. The predicted crack-growth lives for the VA and Mini-Falstaff spectrum tests were also short by 25–45%. A modified model with some assumed notch constraint effects matched the spectrum tests quite well. Issues on the crack-starter-notch effects under spectrum loading are discussed, and recommendations are suggested on avoiding these notch effects.  相似文献   

12.
Full‐field three‐dimensional (3D) numerical analyses was performed to determine in‐plane and out‐of‐plane constraint effect on crack‐front stress fields under creep conditions of finite thickness boundary layer models and different specimen geometries. Several parameters are used to characterize constraint effects including the non‐singular T‐stresses, the local triaxiality parameter, the Tz ‐factor of the stress‐state in a 3D cracked body and the second‐order‐term amplitude factor. The constraint parameters are determined for centre‐cracked plate, three‐point bend specimen and compact tension specimen. Discrepancies in constraint parameter distribution on the line of crack extension and along crack front depending on the thickness of the specimens have been observed under different loading conditions of creeping power law hardening material for various configurations of specimens.  相似文献   

13.
The pre‐existence of openings, which play an important role in the mechanical properties and cracking behaviours of rock, is prevalent in rock mass. The interaction among pre‐existing openings (or holes) complicates the instability problems when rock contains multiple holes. Studying the strength failure behaviour of rock that contains multiple pre‐existing holes contributes to the fundamental knowledge of the excavation and stability of underground rock engineering. In this study, first, a series of uniaxial compression tests were performed on granite specimens that contain multiple small holes to investigate the effect of the geometry of pre‐existing holes on the strength and fracture behaviours of rock. The crack initiation, propagation and coalescence process, and acoustic emission (AE) characteristics were investigated using photographic and AE monitoring. Three failure modes were identified, ie, splitting failure, stepped path failure, and planar failure modes. Second, a set of micromechanical parameters in the PFC3D model were calibrated by comparison with the experimental results of an intact granite specimen. The numerically simulated peak strength, peak strain, and failure mode of preholed specimens were consistent with the experimental results. In accordance with the numerical results, the failure modes of the preholed specimens were dependent on the bridge angle and number of holes. Last, the internal fracture characteristics of numerical specimens were revealed by analyzing the horizontal and vertical cross sections at different positions.  相似文献   

14.
Crack growth and high cycle fatigue behaviour of an AA6060 aluminium alloy after ECAP combined with a subsequent heat treatment Crack growth properties of the Al‐Mg‐Si alloy AA6060 as well as the high cycle fatigue behaviour have been investigated after equal‐channel angular pressing (ECAP). In our study, experiments have been conducted on different stages of microstructural breakdown and strain hardening of the material as they were present after different numbers of ECAP passes. A bimodal condition, obtained after two pressings, and a homogeneously ultrafine‐grained condition after eight repetitive pressings have been investigated. Furthermore, optimized conditions with an enhanced ductility, produced by ECAP processing combined with a following short‐time aging treatment were included into the study. Crack growth experiments have been conducted in the near‐threshold regime and the region of stable crack growth, covering a range of load ratios from R = 0.1 up to 0.7. It was found that the lowered fatigue threshold ΔKth of the as‐extruded material can be enhanced by the combination of ECAP and short‐time aging, owing to the increased ductility and strain hardening capability of this material. By means of SEM investigations and tensile tests, the crack growth properties of the different conditions were related to microstructural and mechanical features. In fatigue tests, load reversals up to failure and the fatigue limit for an as‐extruded condition and an optimized condition after two ECAP‐passes have been compared to the coarse grained initial condition and a remarkable increase in fatigue strength was noted.  相似文献   

15.
This paper describes an investigation into the fatigue threshold behaviour of two structural aluminium aerospace alloys, Al 2014‐T6 and Al 7075‐T6, when subjected to Mode II, Mode III and mixed Mode II/III loading. A unique four‐point shear loading test rig was employed to cyclically load sharply edge‐notched square bar specimens using an increasing load technique. The main aim of the work has been to generate Mode II–Mode III interaction diagrams for the fatigue threshold in each case, in order to facilitate improved design procedures for components fabricated from these alloys, which are susceptible to fatigue cracking under predominantly shear type loading. Aircraft are subjected to structural loads consisting of: pressurization, tension/compression, bending, shear and torsion, both on the ground and in flight. Representative fatigue fracture surfaces have been examined using scanning electron microscopy.  相似文献   

16.
Fatigue data are generally derived under constant‐amplitude loading conditions, but aircraft components are subjected to variable‐amplitude loading. Without interaction effects, caused by overloads and underloads intermingled in a loading sequence, it could be relatively easy to establish a crack growth curve by means of a cycle‐by‐cycle integration. However, load‐spectrum effects largely complicate a crack growth under variable‐amplitude cycling. In this paper, fatigue crack growth behaviour of aeronautical aluminium alloy 2024‐T3 was studied. Effects of various loading conditions such as stress ratio and amplitude loadings were investigated. In particular, the effect of different overloads on the fatigue crack growth was simulated using Zencrack code. Preliminary analyses on Compact Tension (CT) specimens proved that the numerical results generated were in agreement with the results provided by an afgrow code for the same conditions. A case study was carried out on a helicopter component, undergoing repeated overloads, to compare numerical results obtained implementing yield zone models in Zencrack.  相似文献   

17.
The effects of side‐groove depth on creep crack‐tip constraint and creep crack growth (CCG) rate in C(T) specimens have been quantitatively studied. The results indicate that with increasing side‐groove depth, the constraint level and CCG rate increase and constraint distribution along crack front (specimen thickness) becomes more uniform. The constraint and CCG rate of thinner specimen are more sensitive to side‐groove depth. Two new creep constraint parameters (namely R* and Ac) both can quantify constraint levels of the specimens with and without side‐grooves, and the quantitative correlations of CCG rate with constraint have been established. The mechanism of the side‐groove depth effect on the CCG rate has also been analyzed.  相似文献   

18.
Three‐dimensional elastic–plastic finite element analyses have been conducted for 21 experimental specimens with different in‐plane and out‐of‐plane constraints in the literature. The distributions of five constraint parameters (namely T‐stress, Q, h, Tz and Ap) along crack fronts (specimen thickness) for the specimens were calculated. The capability and applicability of the parameters for characterizing in‐plane and out‐of‐plane crack‐tip constraints and establishing unified correlation with fracture toughness of a steel were investigated. The results show that the four constraint parameters (T‐stress, Q, h and Tz) based on crack‐tip stress fields are only sensitive to in‐plane or out‐of‐plane constraints. Therefore, the monotonic unified correlation curves with fracture toughness (toughness loci) cannot obtained by using them. The parameter Ap based on crack‐tip equivalent plastic strain is sensitive to both in‐plane and out‐of‐plane constraints, and may effectively characterize both of them. The monotonic unified correlation curves with fracture toughness can be obtained by using Ap. In structural integrity assessments, the correlation curves may be used in the failure assessment diagram (FAD) methodology for incorporating both in‐plane and out‐of‐plane constraint effects in structures for improving accuracy.  相似文献   

19.
In the present work, an attempt has been made to study the fatigue crack growth in a part‐through circumferentially notched pipe specimen. It has been observed that under four‐point bend cyclic load, the crack propagates in a transverse plane in the radial direction initially followed by propagation in the circumferential direction. The crack extension in the circumferential direction resulted crack growth retardation in the radial direction. This behaviour of the fatigue crack growth has been modelled, and a fatigue life prediction methodology based on an exponential model has been applied for prediction of fatigue crack growth.  相似文献   

20.
Aircraft grade 7010 aluminum alloy was heat treated to two different conditions: (1) standard peak aging (T6) and (2) retrogression and re‐aging (RRA). The microstructures of these alloys were characterized by using transmission electron microscope. Fatigue crack growth rate (FCGR) tests were conducted using standard compact tension specimens, following ASTM standards. Tests were conducted at various stress ratios, R ranging from 0.1 to 0.7. The RRA‐treated alloy was observed to contain coarsened η′ (MgZn2) precipitates with higher inter‐particle spacing when compared with T6‐treated alloy. The grain boundary precipitates (GBPs) were also coarsened and discontinuous in RRA‐treated alloy as compared with continuous GBPs in T6 condition. The FCGR was lower and ΔKth was higher in RRA‐treated alloy compared with T6‐treated alloy at all the stress ratios investigated. Improved fatigue crack growth resistance in RRA‐treated alloy was correlated to the modified microstructure and enhanced crack closure levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号