首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
SnO2–ZrO2 nanocomposite catalysts with different compositions ranging from 0 to 100% of SnO2 were prepared at room temperature by co-precipitation method using aqueous ammonia as a hydrolyzing agent. X-ray diffraction, transmission electron microscopic characterization revealed the SnO2–ZrO2 nanocomposite behavior. Acid–base properties of these catalysts were ascertained by temperature-programmed desorption (TPD) of NH3 and CO2. Both acidic and basic sites distribution of the nanocomposite catalysts is quite different from those of respective single oxides (SnO2 or ZrO2). Catalytic activity of these nanocomposite catalysts for ethylbenzene dehydrogenation (EBD) to styrene in the presence of excess CO2 was evaluated. The change in the acid–base bi-functionality of the nanocomposite catalysts in comparison with single oxides had profound positive influence in enhancing the catalytic activity.  相似文献   

2.
Phenol was oxidized in supercritical water at 380–450°C and 219–300 atm, using CuO/Al2O3 as a catalyst in a packed-bed flow reactor. The CuO catalyst has the desired effects of accelerating the phenol disappearance and CO2 formation rates relative to non-catalytic supercritical water oxidation (SCWO). It also simultaneously reduced the yield of undesired phenol dimers at a given phenol conversion. The rates of phenol disappearance and CO2 formation are sensitive to the phenol and O2 concentrations, but insensitive to the water density. A dual-site Langmuir–Hinshelwood–Hougen–Watson rate law used previously for catalytic SCWO of phenol over other transition metal oxides and the Mars–van Krevelen rate law can correlate the catalytic kinetics for phenol disappearance over CuO. The supported CuO catalyst exhibited a higher activity, on a mass of catalyst basis, for phenol disappearance and CO2 formation than did bulk MnO2 or bulk TiO2. The CuO catalyst had the lowest activity, however, when expressed on the basis of fresh catalyst surface area. The CuO catalyst exhibited some initial deactivation, but otherwise maintained its activity throughout 100 h of continuous use. Both Cu and Al were detected in the reactor effluent, however, which indicates the dissolution or erosion of the catalyst at reaction conditions.  相似文献   

3.
MnOx–CeO2 mixed oxides prepared by sol–gel method, coprecipitation method and modified coprecipitation method were investigated for the complete oxidation of formaldehyde. Structure analysis by H2-TPR and XPS revealed that there were more Mn4+ species and richer lattice oxygen on the surface of the catalyst prepared by the modified coprecipitation method than those of the catalysts prepared by sol–gel and coprecipitation methods, resulting in much higher catalytic activity toward complete oxidation of formaldehyde. The effect of calcination temperature on the structural features and catalytic behavior of the MnOx–CeO2 mixed oxides prepared by the modified coprecipitation was further examined, and the catalyst calcined at 773 K showed 100% formaldehyde conversion at a temperature as low as 373 K. For the samples calcined below 773 K, no any diffraction peak corresponding to manganese oxides could be detected by XRD measurement due to the formation of MnOx–CeO2 solid solution. While the diffraction peaks corresponding to MnO2 phase in the samples calcined above 773 K were clearly observed, indicating the occurrence of phase segregation between MnO2 and CeO2. Accordingly, it was supposed that the strong interaction between MnOx and CeO2, which depends on the preparation route and the calcination temperature, played a crucial role in determining the catalytic activity toward the complete oxidation of formaldehyde.  相似文献   

4.
Nb2O5 loaded on the supports and mixed with oxides was studied to investigate the activity and acidity for Friedel-Crafts benzylation of anisole. From the study on the loaded catalysts, a preliminary conclusion for the selection of metal oxide was obtained; namely, such an acidic oxide as silica was suitable for the support of Nb2O5. Then, MoO3 and WO3 were mixed with Nb2O5, and prominent high catalytic activity and acidities were observed. Both oxides of Nb2O5-MoO3 and Nb2O5-WO3 showed almost similar behavior with respect to characterization and catalytic activity. Surface area increased, X-ray diffraction (XRD) and Raman bands were lost, acid sites, both Brønsted and Lewis characters generated, and surface acid site density was as high as 2–4 nm−2. The acid sites were generated on the amorphous metal oxides consisting of Nb and Mo or W oxides, different in nature from those of Nb2O5 calcined and un-calcined, and active for Friedel-Crafts benzylation.  相似文献   

5.
Degradation mechanism of Ti/IrO2(0.7) + MnO2(0.3) anode for oxygen evolution was studied in 0.5 M H2SO4 solution by field emission scanning electron microscopes (FESEM), Tafel slope, X-ray diffraction (XRD) and electrochemical impedance spectroscopic (EIS). The whole surface of the non-electrolyzed Ti/IrO2(0.7) + MnO2(0.3) anode consisted of nano-IrO2 poles array. The anode surface had hardly discovered cracks and had compact morphology that can prevent the electrolyte from entering the Ti/oxide interface and an insulating TiO2 film from growing on the Ti-based surface. An insulating TiO2 phase had not been generated on the Ti/oxide interface during the process of O2 evolution and the inactive anode surface still remained mass of the IrO2 and MnO2 oxides. The chemical dissolution of Ti/IrO2(0.7) + MnO2(0.3) anode coating was not the main reason for electrode degradation in 0.5 M H2SO4 solution. The degradation mechanism of Ti/IrO2(0.7) + MnO2(0.3) anode differed from other conventional oxide electrodes for O2 evolution in acid medium. The platforms of Tafel slope and anode potential (900–1050 h) indicated that the change of the oxygen evolution reaction (OER) mechanism was the main reason for degradation of Ti/IrO2(0.7) + MnO2(0.3) anode due to the change of adsorption intermediate.  相似文献   

6.
The solvothermal reaction of mixtures of aluminum isopropoxide (AIP) and gallium acetylacetonate (Ga(acac)3) directly yielded the mixed oxides of γ-Ga2O3-Al2O3. In the solvothermal synthesis, the crystal structure of mixed oxides was controlled by the initial formation of γ-Ga2O3 nuclei. The mixed oxides prepared in diethylenetriamine have extremely high activities for selective catalytic reduction (SCR) of NO with methane as a reducing agent. With increasing crystallite size of the spinel structure, the catalytic activity increased. The ratio of the amount of methane consumed by combustion to total methane conversion was proportional to the density of acid sites on the surface of the mixed oxides. The mixed oxide catalysts prepared in diethylenetriamine had lower densities of acid sites and showed a higher methane-efficiency for CH4-SCR than those prepared in other solvents. These catalysts maintained their high activity even when the reaction was carried out under the severe conditions (i.e., high space velocity and low NO concentration).  相似文献   

7.
李锦卫  朱佳 《工业催化》2015,23(12):1002-1007
采用沉积-沉淀法制备CuMnO_x/TiO_2新型甲苯燃烧催化剂,考察焙烧温度、Cu与Mn物质的量比、Cu和Mn总负载量、空速及水蒸汽含量对催化甲苯燃烧性能的影响。研究表明,焙烧温度500℃和Cu与Mn物质的量比为1∶1时,催化剂活性最好,反应温度250℃时,甲苯去除率为100%;水蒸汽的出现明显降低了甲苯转化率。XRD和H2-TPR表征结果表明,CuMnO_x/TiO_2催化剂的主要活性相为铜锰尖晶石(Cu1.5Mn1.5O4),它的存在降低了CuMnO_x/TiO_2催化剂的还原温度,是催化活性优良的主要原因。  相似文献   

8.
Surface-phase ZrO2 on SiO2 (SZrOs) and surface-phase La2O3 on Al2O3 (SLaOs) were prepared with various loadings of ZrO2 and La2O3, characterized and used as supports for preparing Pt/SZrOs and Pt/SLaOs catalysts. CH4/CO2 reforming over the Pt/SZrOs and Pt/SLaOs catalysts was examined and compared with Pt/Al2O3 and Pt/SiO2 catalysts. CO2 or CH4 pulse reaction/adsorption analysis was employed to elucidate the effects of these surface-phase oxides.

The zirconia can be homogeneously dispersed on SiO2 to form a stable surface-phase oxide. The lanthana cannot be spread well on Al2O3, but it forms a stable amorphous oxide with Al2O3. The Pt/SZrOs and Pt/SLaOs catalysts showed higher steady activity than did Pt/SiO2 and Pt/Al2O3 by a factor of three to four. The Pt/SZrOs and Pt/SLaOs catalysts were also much more stable than the Pt/SiO2 and Pt/Al2O3 catalysts for long stream time and for reforming temperatures above 700 °C. These findings were attributed to the activation of CO2 adsorbed on the basic sites of SZrOs and SLaOs.  相似文献   


9.
MnOx–CeO2 mixed oxides with a Mn/(Mn + Ce) molar ratios of 0–1 were prepared by a modified coprecipitation method and investigated for the complete oxidation of formaldehyde. The MnOx–CeO2 with Mn/(Mn + Ce) molar ratio of 0.5 exhibited the highest catalytic activity among the MnOx–CeO2 mixed oxides. Structure analysis by X-ray powder diffraction and temperature-programmed reduction of hydrogen revealed that the formation of MnOx–CeO2 solid solution greatly improved the low-temperature reducibility, resulting in a higher catalytic activity for the oxidation of formaldehyde. Promoting effect of Pt on the MnOx–CeO2 mixed oxide indicated that both the Pt precursors and the reduction temperature greatly affected the catalytic performance. Pt/MnOx–CeO2 catalyst prepared from chlorine-free precursor showed extremely high activity and stability after pretreatment with hydrogen at 473 K. 100% conversion of formaldehyde was achieved at ambient temperature and no deactivation was observed for 120 h time-on-stream. The promoting effect of Pt was ascribed to enhance the effective activation of oxygen molecule on the MnOx–CeO2 support.  相似文献   

10.
The mixed oxide catalyst (Mn2O3 + SnO2) prepared by the coprecipitation method has been impregnated with Pd metal and it's catalytic behaviour for CO oxidation reaction has been investigated. In the coprecipitated material, Mn2O3 and SnO2 were found to crystallise at 875 K and 1175 K, respectively, which are significantly higher than the crystallisation temperatures of individual oxides prepared under similar conditions. Results of catalytic oxidation of CO, carried out using the pulse method for the mixed oxide system and the individual oxides, suggest significant synergistic effects between these two oxides. The impregnation of palladium metal facilitated CO oxidation and the catalyst Pd/(Mn2O3 + SnO2) was found to be quite effective for CO oxidation even at room temperature. Further, the CO disproportionation has been observed on palladium sites in the temperature range 350 to 400 K for the individual oxide systems.  相似文献   

11.
SO2, which is an air pollutant causing acid rain and smog, can be converted into elemental sulfur in direct sulfur recovery process (DSRP). SO2 reduction was performed over catalyst in DSRP. In this study, SnO2-ZrO2 catalysts were prepared by a co-precipitation method, and CO and coal gas, which contains H2, CO, CO2 and H2O, were used as reductants. The reactivity profile of the SO2 reduction over the catalysts was investigated at the various reaction conditions as follows: reaction temperature of 300–550 °C, space velocity of 5000–30,000 cm3/g-cat. h, [reductant]/[SO2] molar ratio of 1.0–4.0 and Sn/Zr molar ratio of SnO2-ZrO2 catalysts 0/1, 2/8, 3/5, 5/5, 2/1, 3/1, 4/1 and 1/0. SnO2-ZrO2 (Sn/Zr = 2/1) catalyst showed the best performance for the SO2 reduction in DSRP on the basis of our experimental results. The optimized reaction temperature and space velocity were 325 °C and 10,000 cm3/g-cat. h, respectively. The optimal molar ratio of [reductant]/[SO2] varied with the reductants, that is, 2.0 for CO and 2.5 for coal gas. SO2 conversion of 98% and sulfur yield of 78% were achieved with the coal gas.  相似文献   

12.
A series of Al2O3-ZrO2 mixed oxides was prepared by the sol-gel method with variable amounts of ZrO2 between pure alumina and pure zirconia. Textural, bulk and surface characterization of the samples was carried out by nitrogen physisorption (SBET, porosity), surface acidity, zero point charge (ZPC), thermal analysis (DSC, TGA), X-ray diffraction (XRD) and FT-Raman spectroscopy. The textural results show that at low zirconia contents, higher surface areas than those of pure alumina are obtained, and that the mixed oxides samples show a bimodal pore size distribution different from that of a mechanical mixture of the pure oxides. Also, in the zirconia-rich samples, higher surface areas than for pure zirconia are stabilized. The ZPC results indicate the formation of a surface composition equivalent to the bulk composition of the two oxides. The acidity measurements show that, as the density of acid sites in the mixed oxides increases steadily with zirconia content, a sharp increase is observed between the zirconia-rich mixed oxides and the pure ZrO2. It appears possible then to tune the acidity of the mixed oxide by changing its composition. The XRD and FT-Raman results show that the incorporation of alumina in the support stabilizes the metastable cubic and tetragonal zirconia phases, possibly by a matrix effect which constrains the size of the ZrO2 particles below the critical size beyond which the crystallization and transformation process to a more stable zirconia phase occurs.  相似文献   

13.
The catalytic decomposition of CHClF2 was studied over various acidic metal oxides in a fixed-bed reactor. The Cr2O3ZrO2 exhibited the highest activity. The presence of water vapor in the reaction system suppresses the transformation of oxides to fluorides, progresses the formation of CO2, and it improves the catalysts life.  相似文献   

14.
Nanosized NiO,CeO2 and NiO-CeO2 mixed oxides with different Ni/Ce molar ratios were prepared by the soft template method.All the samples were characterized by different techniques as to their chemical composition,structure,morphology and texture.On the catalysts submitted to the same reduction pretreatment adopted for the activity tests the surface basic properties and specific metal surface area were also determined.NiO and CeO2 nanocrystals of about 4 nm in size were obtained,regardless of the Ni/Ce molar ratio.The Raman and X-ray photoelectron spectroscopy results proved the formation of defective sites at the NiO-CeO2 interface,where Ni species are in strong interaction with the support.The microcalorimetric and Fourier transform infrared analyses of the reduced samples highlighted that,unlike metallic nickel,CeO2 is able to effectively adsorb CO2,forming carbonates and hydrogen carbonates.After reduction in H2 at 400°C for 1 h,the catalytic performance was studied in the CO and CO2 co-methanation reaction.Catalytic tests were performed at atmospheric pressure and 300°C,using CO/CO2/H2 molar compositions of 1/1/7 or 1/1/5,and space velocities equal to 72000 or 450000 cm3?h-1?gcat-1.Whereas CO was almost completely hydrogenated in any investigated experimental conditions,CO2 conversion was strongly affected by both the CO/CO2/H2 ratio and the space velocity.The faster and definitely preferred CO hydrogenation was explained in the light of the different mechanisms of CO and CO2 methanation.On a selected sample,the influence of the reaction temperature and of a higher number of space velocity values,as well as the stability,were also studied.Provided that the Ni content is optimized,the NiCe system investigated was very promising,being highly active for the COx co-methanation reaction in a wide range of operating conditions and stable(up to 50 h)also when submitted to thermal stress.  相似文献   

15.
尖晶石型复合氧化物因具有独特的结构特征而成为相对理想的柴油车尾气处理催化剂。采用溶胶-凝胶法制备尖晶石型Mn_(1-x)M_xCo_2O_4催化剂,通过X射线衍射(XRD)和程序升温氧化(TDO)等对Mn_(1-x)M_xCo_2O_4催化剂进行表征。结果表明,制备的样品Mn_(1-x)M_xCo_2O_4均为尖晶石型复合氧化物;掺杂Cu、Ce后,催化剂的氧化性能有不同程度的变化。在固定床微型反应器上对催化剂催化活性进行评价,结果表明,与纯MnCo_2O_4相比,Mn_(0.9)Ce_(0.1)Co_2O_4催化剂催化活性提高,Mn_(0.9)Cu_(0.1)Co_2O_4催化剂催化活性降低,但CO_2选择性增加。  相似文献   

16.
The nano-CeO2/ZnO catalysts were prepared using a novel combination of homogeneous precipitation with micro-emulsion for oxidative coupling of methane with CO2 as an oxidant. The prepared catalysts were compared with those prepared using the conventional impregnation. The catalysts prepared in two ways were characterized with FTIR, TEM, XRD and CO2-TPD. The effects of the reaction temperature, the amount of ZnO doped in the catalysts and the average size were investigated. The experimental investigation demonstrated that methane conversion over the nano-CeO2/ZnO catalysts prepared by the combined technique was higher than that obtained over catalysts prepared by the conventional impregnation. A better low-temperature activity has also been achieved over the nanocatalysts. There was no clear trend between the average size of nano-CeO2/ZnO catalysts and their catalytic performance but methane conversion increased with increasing fractal dimension of nanocatalysts.  相似文献   

17.
采用简单的水热法,通过控制不同锰源、酸碱性及水热温度等条件制备一系列MnO_2催化剂,利用SEM、XRD、N_2吸附-脱附和H_2-TPR等对MnO_2催化剂的物化性能进行表征,考察MnO_2催化剂催化炭烟颗粒燃烧的性能。结果表明,制备的纳米棒状MnO_2催化剂均具有良好的催化燃烧炭烟活性,在水热温度120℃、锰源为硝酸锰和酸性条件下,制备的MnO_2催化剂具有最佳催化燃烧炭烟颗粒的性能。  相似文献   

18.
The effect of adsorbed oxygen for selectivity of acetophenone (AP) hydrogenation on Pd/SiO2 catalyst at 298 K has been studied by means of gas phase acetophenone hydrogenation, infrared (IR) spectra, and temperature-programmed desorption. Acetophenone hydrogenation on reduced Pd/SiO2 catalyst reveals a typical series reaction in which phenylethanol (PE) is the intermediate for ethylbenzene (EB) formation. The selectivity of the reaction is towards phenylethanol at low temperature. The oxidized Pd/SiO2 catalyst exhibits very different catalytic selectivity with reduced catalyst. The selectivity of ethylbenzene can be significantly boosted to over 90%, even if the reaction approaches zero conversion, suggesting that phenylethanol needs not be an intermediate for production of ethylbenzene from acetophenone. The formation of ethylbenzene and phenylethanol on oxidized Pd may be controlled by a parallel reaction pathway. The numbers of adsorbed oxygen on Pd surface strongly dominate the rate of EB formation. The bulk Pd oxide cannot be reduced by hydrogen at 298 K, so the oxygen atoms in Pd bulk act a poison for AP hydrogenation, leading to deactivation of oxidized Pd catalyst. The adsorbed oxygen on Pd surface plays the important role that can activate the C---H bond of CH3 group in acetophenone, leading to the formation of a new intermediate (perhaps acetophenone enolate). This intermediate is the key species that will be further hydrogenated to ethylbenzene.  相似文献   

19.
This is the first review of titanium dioxide-zirconium dioxide (TiO2-ZrO2) mixed oxides, which are frequently employed as catalysts and catalyst supports. In this review many details pertaining to the synthesis of these mixed oxides by various conventional and nonconventional methods and their characterization by several techniques, as reported in the literature, are assessed. These mixed oxides have been synthesized by different preparative analogies and were extensively characterized by employing various spectroscopic and nonspectroscopic techniques. The TiO2-ZrO2 mixed oxides are also extensively used as supports with metals, nonmetals, and metal oxides for various catalytic applications. These supported catalysts have also been thoroughly investigated by different techniques. The influence of TiO2-ZrO2 on the dispersion and surface structure of the supported active components as examined by various techniques in the literature has been contemplated. A variety of reactions catalyzed by TiO2-ZrO2 and supported titania-zirconia mixed oxides, namely; dehydrogenation, decomposition of chlorofluoro carbons (CFCs), alcohols from epoxides, synthesis of ε-caprolactam, partial oxidation, deep oxidation, hydrogenation, hydroprocessing, organic transformations, NOx abatement, and photo catalytic VOC oxidations that have been pursued in the literature are presented with relevant references.  相似文献   

20.
This paper reports results of studies on structure and activity in soot combustion of nanocrystalline CeO2 and CeLnOx mixed oxides (Ln = Pr, Tb, Lu, Ce/Ln atomic ratios 5/1). Nano-sized (4–5 nm) oxides with narrow size distribution were prepared by a microemulsion method W/O. Microstructure, morphology and reductivity of the oxides annealed up to 950 °C in O2 and H2 were analyzed by HRTEM, XRD, FT-IR, Raman spectroscopy and H2-TPR. Obtained mixed oxides had fluorite structure of CeO2 and all exhibited improved resistance against crystal growth in O2, but only CeLuOx behaved better than CeO2 in hydrogen.

The catalytic activity of CeO2, CeLnOx and physical mixtures of CeO2 + Ln2O3 in a model soot oxidation by air was studied in “tight contact” mode by using thermogravimetry. Half oxidation temperature T1/2 for soot oxidation catalysed by nano-sized CeO2 and CeLnOx was similar and ca. 100 °C lower than non-catalysed oxidation. However, the mixed oxides were much more active during successive catalytic cycles, due to better resistance to sintering. Physical mixtures of nanooxides (CeO2 + Ln2O3) showed exceptionally high initial activity in soot oxidation (decrease in T1/2 by ca. 200 °C) but degraded strongly in successive oxidation cycles. The high initial activity was due to the synergetic effect of nitrate groups present in highly disordered surface of nanocrystalline Ln2O3 and enhanced reductivity of nanocrystalline CeO2.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号