首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tensile deformation and fracture behaviour of aluminium alloy 2014 discontinuously-reinforced with particulates of Al2O3 was studied with the primary objective of understanding the influence of reinforcement content on composite microstructure, tensile properties and quasi-static fracture behaviour. Results reveal that elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. With increase in test temperature the elastic modulus showed a marginal decrease while the ductility exhibited significant improvement. The improved strength of the Al-Al2O3 composite is ascribed to the concurrent and mutually interactive influences of residual stresses generated due to intrinsic differences in thermal expansion coefficients between constituents of the composite, constrained plastic flow and triaxiality in the soft and ductile aluminium alloy matrix due to the presence of hard and brittle particulate reinforcements. Fracture on a microscopic scale initiated by cracking of the individual or agglomerates of Al2O3 particulates in the metal matrix and decohesion at the matrix-particle interfaces. Failure through cracking and decohesion at the interfaces increased with reinforcement content in the matrix. The kinetics of the fracture process is discussed in terms of applied far-field stress and intrinsic composite microstructural effects.  相似文献   

2.
Aluminium-matrix composites containing AlN, SiC or Al2O3 particles were fabricated by vacuum infiltration of liquid aluminium into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AlN had similar tensile strengths and higher ductility compared to Al/SiC of similar reinforcement volume fractions at room temperature, but exhibited higher tensile strength arid higher ductility at 300–400 °C and at room temperature after heating at 600 °C for 10–20 days. The ductility of Al/AIN increased with increasing temperature from 22–400 °C, while that of Al/SiC did not change with temperature. At 400 °C, Al/AlN exhibited mainly ductile fracture, whereas Al/SiC exhibited brittle fracture due to particle decohesion. Moreover, Al/AlN exhibited greater resistance to compressive deformation at 525 °C than Al/SiC. The superior high-temperature resistance of Al/AlN is attributed to the lack of a reaction between aluminium and AlN, in contrast to the reaction between aluminium and SiC in Al/SiC. By using Al-20Si-5Mg rather than aluminium as the matrix, the reaction between aluminium and SiC was arrested, resulting in no change in the tensile properties after heating at 500 °C for 20 days. However, the use of Al-20Si-5Mg instead of aluminium as the matrix caused the strength and ductility to decrease by 30% and 70%, respectively, due to the brittleness of Al-20Si-5Mg. Therefore, the use of AIN instead of SiC as the reinforcement is a better way to avoid the filler-matrix reaction. Al/Al2O3 had lower room-temperature tensile strength and ductility compared to both Al/AlN and Al/SiC of similar reinforcement volume fractions, both before and after heating at 600 °C for 10–20 days. Al/Al2O3 exhibited brittle fracture even at room temperature, due to incomplete infiltration resulting from Al2O3 particle clustering.  相似文献   

3.
A new intermetallic particle reinforced metal matrix composite was produced from pure Al and 15 wt% Al72Ni12Co16 quasicrystalline particles by stir-casting method, followed by hot-extrusion. Microstructural analysis of the as-cast composite shows that the Al72Ni12Co16 quasicrystalline phase has transformed to the crystalline phase Al9(Co, Ni)2 and an eutectic structure has formed in the Al matrix during the casting process. The particle size of the Al9(Co, Ni)2 phase is much smaller than that of the original quasicrystalline particles. After extrusion, the composite has a more uniform distribution of the reinforcement particles and eutectic structure as well as a reduced porosity. Tensile tests indicate that the mechanical properties of the as-cast composite are improved over the matrix properties remarkably, except for the ductility. The strength and ductility of the composite can be improved by the hot-extrusion, while the elastic modulus can be slightly decreased.  相似文献   

4.
Niobium particle reinforced aluminum oxide (Al2O3) dispersion strengthened copper composite is an attractive and emerging engineered material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. In this paper, the microstructure, tensile deformation and fracture behavior of the composite is examined. The strength of the material decreases with an increase in temperature with a concomitant improvement in ductility. The composite microstructure maintains a high value of yield strength/ultimate tensile strength ratio. The factors contributing to increased strength and the intrinsic mechanisms governing fracture characteristics of the composite are examined in light of intrinsic microstructural effects, nature of loading and deformation characteristics of the matrix.  相似文献   

5.
Abstract

In the present study, elemental and nanoAl2O3 particulate reinforced magnesium materials were synthesised using an innovative disintegrated melt deposition technique followed by hot extrusion. Microstructural characterisation of the composite samples showed retention and uniform distribution of reinforcement, grain refinement of magnesium matrix, and the presence of minimal porosity. Physical properties characterisation revealed that the addition of nanoAl2O3 particulates as reinforcement improves the dimensional stability of pure magnesium. Mechanical properties characterisation revealed that the presence of nanoAl2O3 reinforcement led to significant improvement in hardness, elastic modulus, 0·2% yield strength, UTS and ductility. The results further revealed that the combination of 0·2% yield strength, UTS, and ductility exhibited by nanoAl2O3 reinforced magnesium remained much superior even when compared to magnesium reinforced with a much higher volume percentage of micrometre size SiCp. An attempt is made in the present study to correlate the effect of nanoAl2O3 as reinforcement and its increasing amount with the microstructural, physical, and mechanical properties of magnesium.  相似文献   

6.
In the present study, AZ31B-Al2O3-Ni composites are developed by the addition of different amounts of Ni particulates into AZ31B-1.5Al2O3 using disintegrated melt deposition technique followed by hot extrusion. The AZ31B-1.5Al2O3 nano-composite is known to exhibit excellent ductility (∼30%) matching with that of pure aluminum but its strength levels are compromised. The composites developed in the current study show a homogeneous microstructure and significant improvement in mechanical characteristics. The results of mechanical properties characterization reveal that addition of Ni led to a simultaneous improvement in 0.2% YS (up to 25%), UTS (up to 13%) and hardness (up to 62%). The ductility, however, stayed almost similar to the ductility of monolithic AZ31B in the case of AZ31B-1.5Al2O3-1.5Ni composite while it was compromised for AZ31B-1.5Al2O3-3.19Ni. The results clearly reveal the superior capability of AZ31B-Al2O3-Ni formulations in terms of overall mechanical response when compared to monolithic AZ31B.  相似文献   

7.
In this study, nanostructured AA5005/6 vol.-% Al2O3 composite manufactured by anodising and accumulative roll bonding (ARB) processes was investigated. The microstructure of the AA5005/Al2O3 composite after ninth ARB cycle exhibited a good distribution of alumina reinforcement particles in the AA5005 matrix. It was found that with increasing the number of cycles, the tensile strength of the monolithic and composite samples increased, but their ductility decreased at the first ARB cycle and then increased. The mean grain size of the composite sample after the ninth cycle was 88?nm. The tensile strength of the composite was 3.3 times higher than the initial AA5005 sheet. Observations revealed that the failure mode in the AA5005/Al2O3 composite was the shear ductile fracture.  相似文献   

8.
Deformation and microstructural behaviours of a 20% (volume percent) particle reinforced 6061 Al matrix composite have been studied by torsion from 25 to 540°C with strain rates of 0.1, 1 and 5 s−1. The logarithmic stress versus reciprocal temperature relationship exhibits two slopes indicating different deformation mechanisms. The 20% Al2O3/6061 Al composite shows a greater hardening behaviour than those of the 10% Al2O3/6061 Al composite and of the monolithic alloy. Above 250°C, TEM investigations reveal much smaller subgrain size and higher volume of non-cellular substructures, as well as dynamic recrystallization nuclei in the 20% Al2O3/6061 Al composite in comparison to those of the 10% Al2O3/6061 Al composite and matrix alloy the same test condition. The torsion fracture surface was studied and compared to the three point bending failure specimens.  相似文献   

9.
Some important problems associated with cast metal matrix composites (MMCs) include non-uniformity of the reinforcement particles, high porosity content, and weak bonding between reinforcement and matrix, which collectively result in low mechanical properties. Accumulative roll bonding (ARB) process was used in this study as a very effective method for refinement of microstructure and improvement of mechanical properties of the cast Al/10 vol.% Al2O3 composite. The average particle size of the Al2O3 was 3 μm. The results revealed that the microstructure of the composite after eleven cycles of the ARB had an excellent distribution of alumina particles in the aluminum matrix without any noticeable porosity. The results also indicated that the tensile strength and elongation of the composites increased as the number of ARB cycles increased. After eleven ARB cycles tensile strength and elongation values reached 158.1 MPa and 7.8%, which were 2.54 and 2.36 times greater than those of the as-cast MMC, respectively.  相似文献   

10.
《Materials Letters》2004,58(3-4):333-336
The microstructure and micro-yield strength of sub-micron Al2O3 particle reinforced 2024Al composites and the effect of the thermal-cold cycling treatment on the microstructure and properties were studied. The results show that the dislocations are rare in the microstructure of the sub-micron Al2O3p/2024Al composite in the squeeze casting condition. Aging and thermal-cold cycling treatment does not change this phenomenon. The Al2O3 particles are fine, so the thermal misfit between particles and the matrix is very small during the temperature change, resulting in decreased dislocations. The tiny and uniformly dispersed S′ precipitates and sub-micron particles can effectively pin dislocations, therefore, the micro-yield strength of the composite increases. Depending on the condition of the thermal-cold cycling treatment after aging, both the size and distribution of the S′ precipitates in the composite change, and they have great effect on the micro-yield strength of the composite.  相似文献   

11.
In the present study, magnesium based composites were fabricated with three different types of 1.1 volume percent nanosize oxide particulate reinforcements (i.e., Al2O3, Y2O3 and ZrO2) using blend-press-sinter methodology avoiding ball milling. Microstructural characterization of the materials revealed reasonably uniform distribution of nano-reinforcement, significant grain refinement and the presence of minimal porosity. Mechanical properties characterization revealed that the incorporation of nano-sized oxide particulates as reinforcement led to a simultaneous increase in hardness, 0.2% yield strength, UTS and ductility of pure magnesium. The results further revealed that the 0.2% yield strength, UTS and ductility combination of the magnesium containing nano-size Al2O3 remained higher when compared to high strength magnesium alloy AZ91 reinforced with much higher amount of micron size SiC particulates. An attempt is made in the present study to correlate the effect of different types of nano-sized oxide particulates on the microstructural and mechanical properties of magnesium.  相似文献   

12.
The effect of equal channel angular extrusion (ECAE) on the mechanical behavior of AM60/Al2O3p magnesium metal–matrix nanocomposites was investigated. ECAE is a useful technique to produce bulk nanostructured materials through severe plastic deformation. The present magnesium metal–matrix composites (Mg MMCs) with 1 wt% nanosized Al2O3 particles for ECAE were fabricated using stir-casting method. The significantly enhanced mechanical behavior of AM60/Al2O3p magnesium metal–matrix nanocomposites at room temperature, for instance, yield strength (YS), ultimate tensile strength (UTS), and ductility, can be obtained after ECAE process. The AM60/Al2O3p MMC after 4 passes of ECAE exhibited greater YS, UTS, and ductility (+135%, +107%, and +245% increase, respectively) than those of as-cast AM60. Experimental results show that the AM60/1wt %Al2O3p MMC after 4 passes of ECAE exhibits the superior mechanical behavior.  相似文献   

13.
Aluminium-matrix composites were fabricated by liquid metal infiltration of porous particulate reinforcement preforms, using AlN, SiC and Al2O3 as the particles. The quality of the composites depended on the preform fabrication technology. In this work, this technology was developed for high-volume fraction (up to 75%) particulate preforms, which are more sensitive to the preform fabrication process than lower volume fraction whisker/fibre preforms as their porosity and pore size are much lower. The technology developed used an acid phosphate binder (with P/Al molar ratio=23) in the amount of 0.1 wt% of the preform, in contrast to the much larger binder amount used for whisker preforms. The preforms were made by filtration of a slurry consisting of the reinforcement particles, the binder and carrier (preferably acetone), and subsequent baking (preferably at 200 °C) for the purpose of drying. Baking in air at 500 °C instead of 200 °C caused the AlN preforms to oxidize, thereby decreasing the thermal conductivity of the resulting Al/AlN composites. The reinforcement-binder reactivity was larger for AlN than SiC, but this reactivity did not affect the composite properties due to the small binder amount used. The Al/AlN composites were superior to the Al/SiC composites in the thermal conductivity and tensile ductility. The Al/Al2O3 composites were the poorest due to Al2O3 particle clustering.  相似文献   

14.
Abstract

Metal matrix composites are considered as a distinct category of the advanced materials, which have low weight, high strength, high modulus of elasticity, low thermal expansion coefficient and high wear resistance. Among them, Al–Al2O3 composites have achieved significant attention due to their desired properties. In the present research, Al–Al2O3 composites with 5 vol.-% alumina were produced by stir casting at a temperature of 800°C. Two different particle sizes of alumina were used as 53–63 and 90–105 μm. The microstructure of the samples was evaluated by SEM. In addition, the mechanical properties of the samples were measured, and hence, the optimum temperature and particle size of alumina to be added to the Al matrix were determined. The results demonstrated the positive effect of alumina on improving the properties of Al–Al2O3 composites.  相似文献   

15.
The effect of extrusion – forging multistage hot deformation on tensile properties of the 2024Al/Al18B4O33w composites is investigated. The extruded 2024Al/Al18B4O33w composites are used as blanks. The tensile properties of the extruded 2024Al/Al18B4O33w composite followed by secondary deformation are studied. The effects of holding temperature and deformation degree on tensile properties of the extruded composite are discussed. The results show that due to the reduction in stress concentration and dislocations, ultimate tensile strength of the extruded 2024Al/Al18B4O33w composite held at 400 °C for 1 h is lower than that of the extruded composite without holding. Increasing holding temperature from 300 °C to 450 °C, ultimate tensile strength of the extruded 2024Al/Al18B4O33w composite increases firstly and then decreases. The extruded 2024Al/Al18B4O33w composite held at 400 °C for 1 h followed by secondary forging with the larger length to width ratio of 4 : 1 has the ultimate tensile strength of 456.1 MPa, higher than that of the extruded 2024Al/Al18B4O33w composite without secondary forging.  相似文献   

16.
The flow stress of a 1060 Al/Al2O3 composite increases rapidly with strain rate due to the higher dislocation accumulation rate and the increasing strength of dislocation barriers. The Al/Al2O3 interfaces were found to be well bonded even after high-rate deformation of the composite. MgAl2O4 particles observed at Al/Al2O3 interfaces in the composite of the present study are thought to improve the interface strength. Unlike in pure aluminium, a well-developed cell structure was not observed in the deformed 1060 Al/Al2O3 composite. The absence of a well-developed cell structure is thought to result from a more homogeneous slip distribution in the composite.  相似文献   

17.
Powder metallurgical fabrication of SiC and Al2O3 reinforced Al‐Cu alloys Based on metallographic studies the states of composite powder formation during high‐energy ball milling will be discussed. Spherical powder of aluminium alloy AA2017 was used as feedstock material for the matrix. SiC and Al2O3 powders of submicron and micron grain size (<2 μm) were chosen as reinforcement particles with contents of 5 and 15 vol.‐% respectively. The milling duration amounted to a maximum of 4 hours. The abrasion of the surface of the steel balls, the rotor and the vessel is indicated by the content of ferrous particles in the powder. High‐energy ball milling leads to satisfying particle dispersion for both types of reinforcement particles. Further improvements are intended. The microstructure of compact material obtained by hot isostatic pressing and extrusion was studied in detail by scanning and transmission electron microscopy. For both types of reinforcement the microstructure of composites is similar. The microporosity is low. The interface between reinforcement particles and matrix is free of brittle phases and microcracks. In the case of SiC reinforcement particles, a small interface interaction is detectable which implies a good embedding of reinforcement particles. High‐energy ball milling under air‐atmosphere leads to the formation of the spinel phase MgAl2O4 during the subsequent powder‐metallurgical processing. Because of the size, rate and dispersion of the spinel particles, an additional reinforcement effect is expected.  相似文献   

18.
《Composites Part A》2007,38(3):1010-1018
In the present study, Al based composite reinforced with Ti particulates was fabricated by using the disintegrated melt deposition (DMD) processing technique followed by hot extrusion. Microstructural characterization of the as-extruded composite samples revealed a near uniform distribution of the Ti particulates in the Al matrix, good interfacial integrity between the Ti particulates and the Al matrix and minimal presence of porosity. Mechanical properties characterization revealed that the addition of Ti particulates resulted in an increase in macrohardness, 0.2% YS, UTS and elastic modulus. However, the ductility of the composite was found to be decreased by the addition of Ti particulates in the Al matrix. The fractured samples of the composite showed the ductile mode of fracture in the case of Al matrix whilst particle fracture and debonding were observed as the failure mode of the Ti reinforcement.  相似文献   

19.
This study is aimed at understanding the toughness enhancing function of nanoparticles in magnesium nanocomposites, focussing on experimentally observed nanoparticle–matrix interactions during physical deformation. Al2O3 nanoparticles were selected for reinforcement purposes due to the well known affinity between magnesium and oxygen. AZ31/AZ91 (hybrid alloy) and ZK60A magnesium alloys were reinforced with Al2O3 nanoparticles using solidification processing followed by hot extrusion. In tension, each nanocomposite exhibited higher ultimate strength and ductility than the corresponding monolithic alloy. However, the increase in ductility exhibited by ZK60A/Al2O3 (+170%) was significantly higher than that exhibited by AZ31/AZ91/Al2O3 (+99%). The previously unreported and novel formation of high strain zones (HSZs, from nanoparticle surfaces inclusive) during tensile deformation is highlighted here as a significant mechanism supporting ductility enhancement in ZK60A/Al2O3 (+170% enhanced) and AZ31/AZ91/Al2O3 (+99% enhanced) nanocomposites. Also, ZK60A/Al2O3 exhibited lower and higher compressive strength and ductility (respectively) compared to ZK60A while AZ31/AZ91/Al2O3 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Here, the previously unreported nanograin formation (recrystallization) during room temperature compressive deformation as a toughening mechanism in relation to nanoparticle stimulated nucleation (NSN) ability is also highlighted.  相似文献   

20.
This work presents an efficient technique to improve compressibility and thermal properties of Al–Al2O3 nanocomposites. The compressibility behavior was examined by cold compaction test, and the thermal conductivity was calculated through the measured electrical resistivity of the prepared samples. The results showed that the addition of Al2O3 to Al matrix improves the compressibility behavior of the produced nanocomposite. However, it has a negative effect on the thermal conductivity of the produced composite. Adding Al2O3 hard particles accelerates the fracturing process which improves the compressibility behavior. However, it causes some agglomeration at the grain boundaries which reduce the thermal conductivity. The addition of Mg to Al–Al2O3 nanocomposite improves both the compressibility behavior and the thermal conductivity. This is due to the great reduction in the particle size and the agglomeration of reinforcement particles on the grain boundaries which improve the compressibility behavior and the thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号