首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The passivity-based sliding mode control (SMC) problem for a class of uncertain neutral systems with unmeasured states is investigated. Firstly, a particular non-fragile state observer is designed to generate the estimations of the system states, based upon which a novel integral-type sliding surface function is established for the control process. Secondly, a new sufficient condition for robust asymptotic stability and passivity of the resultant sliding mode dynamics (SMDs) is obtained in terms of linear matrix inequalities (LMIs). Thirdly, the finite-time reachability of the predesigned sliding surface is ensured by resorting to a novel adaptive SMC law. Finally, the validity and superiority of the scheme are justified via several examples.  相似文献   

2.
This paper proposes adaptive control designs for vehicle active suspension systems with unknown nonlinear dynamics (e.g., nonlinear spring and piece-wise linear damper dynamics). An adaptive control is first proposed to stabilize the vertical vehicle displacement and thus to improve the ride comfort and to guarantee other suspension requirements (e.g., road holding and suspension space limitation) concerning the vehicle safety and mechanical constraints. An augmented neural network is developed to online compensate for the unknown nonlinearities, and a novel adaptive law is developed to estimate both NN weights and uncertain model parameters (e.g., sprung mass), where the parameter estimation error is used as a leakage term superimposed on the classical adaptations. To further improve the control performance and simplify the parameter tuning, a prescribed performance function (PPF) characterizing the error convergence rate, maximum overshoot and steady-state error is used to propose another adaptive control. The stability for the closed-loop system is proved and particular performance requirements are analyzed. Simulations are included to illustrate the effectiveness of the proposed control schemes.  相似文献   

3.
In this paper, the problem of adaptive practical tracking is investigated by output feedback for a class of uncertain nonlinear systems subject to nonsymmetric dead-zone input nonlinearity with parameters of dead-zone being unknown. Instead of constructing the inverse of dead-zone nonlinearity, an adaptive robust control scheme is developed by designing an output compensator including two dynamic gains based respectively on identification and non-identification mechanism. With the aid of dynamic high-gain scaling approach and Backstepping method, stability analysis of the closed-loop system is proceeded using non-separation principle, which shows that the proposed controller guarantees that all closed-loop signal is bounded while the output of system tracks a broad class of bounded reference trajectories by arbitrarily small error prescribed previously. Finally, two examples are given to illustrate our controller effective.  相似文献   

4.
This study addressed the problem of robust control of a biped robot based on disturbance estimation. Active disturbance rejection control was the paradigm used for controlling the biped robot by direct active estimation. A robust controller was developed to implement disturbance cancelation based on a linear extended state observer of high gain class. A robust high-gain scheme was proposed for developing a state estimator of the biped robot despite poor knowledge of the plant and the presence of uncertainties. The estimated states provided by the state estimator were used to implement a feedback controller that was effective in actively rejecting the perturbations as well as forcing the trajectory tracking error to within a small vicinity of the origin. The theoretical convergence of the tracking error was proven using the Lyapunov theory. The controller was implemented by numerical simulations that showed the convergence of the tracking error. A comparison with a high-order sliding-mode-observer-based controller confirmed the superior performance of the controller using the robust observer introduced in this study. Finally, the proposed controller was implemented on an actual biped robot using an embedded hardware-in-the-loop strategy.  相似文献   

5.
In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound.  相似文献   

6.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.  相似文献   

7.
This paper presents three fuzzy adaptive controllers for a class of uncertain multivariable nonlinear systems with both sector nonlinearities and dead zones: two first controllers are state feedbacks and the last controller is an output feedback. The design of the first controller concerns systems with symmetric and positive definite control–gain matrix, while the second control design is extended to the case of nonsymmetric control–gain matrix thanks to an appropriate decomposition, namely the product of a symmetric positive definite matrix, a diagonal matrix with diagonal entries +1 or ?1, and a unity upper triangular matrix. The third controller is an output feedback extension of the second controller. In this controller, a high-gain observer is incorporated to estimate the unmeasurable states. An appropriate adaptive fuzzy logic system is used to reasonably approximate the uncertain functions. A Lyapunov approach is adopted to derive the parameter adaptation laws and prove the stability of those control systems as well as the exponential convergence of their underlying tracking errors within an adjustable region. The effectiveness of the proposed fuzzy adaptive controllers is illustrated through simulation results.  相似文献   

8.
This paper presents a delay-independent nonlinear disturbance observer (NDO) design methodology for adaptive tracking of uncertain pure-feedback nonlinear systems in the presence of unknown time delays and unmatched external disturbances. Compared with all existing NDO-based control results for uncertain lower-triangular nonlinear systems where unknown time delays have been not considered, the main contribution of this paper is to develop a delay-independent design strategy to construct an NDO-based adaptive tracking scheme in the presence of unknown time-delayed nonlinearities and non-affine nonlinearities unmatched in the control input. The proposed delay-independent scheme is constructed by employing the appropriate Lyapunov-Krasovskii functionals and the same function approximators for the NDO and the controller. It is shown that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

9.
Primary goal of adaptive observers would be to estimate the true states of a plant. Identification of unknown parameters is of secondary interest and is achieved frequently with the persistent excitation condition of some regressors. Nevertheless, two problems are linked to each other in the classical approaches to adaptive observers; as a result, we get a good state estimate once after a good parameter estimate is obtained. This paper focuses on the state estimation without parameter identification so that the state is estimated regardless of persistent excitation. In this direction of research, Besancon (2000) recently summarized that most of adaptive observers in the literature share one common canonical form, in which unknown parameters do not affect the unmeasured states. We enlarge the class of linear systems from the canonical form of (Besancon. 2000) by proposing an adaptive observer (with additional dynamics) that allows unknown parameters to affect those unmeasured states. A recursive algorithm is presented to design the proposed dynamic observer systematically. An example confirms the design procedure with a simulation result.  相似文献   

10.
Adaptive back stepping control (ABC) is originally applied to a linearized model of an active magnetic bearing (AMB) system. Our control goal is to regulate the deviation of the magnetic bearing from its equilibrium position in the presence of an external disturbance and system uncertainties. Two types of ABC methods are developed on the AMB system. One is based on full state feedback, for which displacement, velocity, and current states are assumed available. The other one is adaptive observer based back stepping controller (AOBC) where only displacement output is measurable. An observer is designed for AOBC to estimate velocity and current states of AMB. Lyapunov approach proves the stabilities of both regular ABC and AOBC. Simulation results demonstrate the effectiveness and robustness of two controllers.  相似文献   

11.
The adaptive correction of uncertain equilibrium states in feedback controlled systems is studied in this paper, with application to the active control of compressor surge with uncertainty in the characteristic curves. Adaptive compensation methods are introduced to correct for the uncertainty in the equilibrium state in both the state and the output feedback control cases, using information from the feedback control signal to determine the true equilibrium of the nonlinear plant. In particular, our proposed solutions overcome the odd-number condition, or parity condition, which appears as a recurring limitation in comparable solutions reported in the literature. Conditions for the existence of the adaptive solutions are presented, and the stability of the closed-loop system is demonstrated. The effectiveness of the proposed adaptation mechanism is verified using a high fidelity mathematical model of a compression system, commissioned to test active surge control methods by active magnetic bearings.  相似文献   

12.
This paper addresses the problems of fault estimation and fault-tolerant control for a class of switched stochastic systems with sensor and actuator faults. A reduced-order fault estimation observer is designed to estimate the system states, actuator and sensor faults, simultaneously. In the observer design process, intermediate variables are introduced such that the differential information of the measurement output is not included in the designed observer. Compared with the existing results, the dimension of the proposed observer is reduced, and the sensor fault can be completely unknown and unbounded. An observer based fault-tolerant controller is designed to stabilize the switched stochastic systems. Under arbitrary switching signal, the designed observer and controller can ensure that both the estimation error system and the closed-loop system are mean-square exponentially stable with disturbance attenuation performance. At last, both a numerical example and a switched electrical circuit example verify the proposed method.  相似文献   

13.
This paper studies learning from adaptive neural network (NN) output feedback control of nonholonomic unicycle-type mobile robots. The major difficulties are caused by the unknown robot system dynamics and the unmeasurable states. To overcome these difficulties, a new adaptive control scheme is proposed including designing a new adaptive NN output feedback controller and two high-gain observers. It is shown that the stability of the closed-loop robot system and the convergence of tracking errors are guaranteed. The unknown robot system dynamics can be approximated by radial basis function NNs. When repeating same or similar control tasks, the learned knowledge can be recalled and reused to achieve guaranteed stability and better control performance, thereby avoiding the tremendous repeated training process of NNs.  相似文献   

14.
A matrix inequality approach is proposed to reliably stabilize a class of uncertain linear systems subject to actuator faults, saturation, and bounded system disturbances. The system states are assumed immeasurable, and a classical observer is incorporated for observation to enable state-based feedback control. Both the stability and stabilization of the closed-loop system are discussed and the closed-loop domain of attraction is estimated by an ellipsoidal invariant set. The resultant stabilization conditions in the form of matrix inequalities enable simultaneous optimization of both the observer gain and the feedback controller gain, which is realized by converting the non-convex optimization problem to an unconstrained nonlinear programming problem. The effectiveness of proposed design techniques is demonstrated through a linearized model of F-18 HARV around an operating point.  相似文献   

15.
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations.  相似文献   

16.
This paper proposes a novel adaptive super-twisting fractional-order nonsingular terminal sliding mode (AST–FONTSM) control scheme using time delay estimation (TDE) for the cable-driven manipulators. The designed control scheme utilizes TDE to obtain the estimation of system dynamics, and therefore no system dynamic model information will be required. Afterwards, AST and FONTSM schemes are applied to ensure good control performance in both reaching and sliding mode phases. Due to the adoption of AST scheme, good robustness and high control precision are obtained in the reaching phase, while the boundary information of the lumped uncertainties will be no longer required. Thanks to the utilization of FONTSM error dynamics, fast convergence and accurate tracking and strong robustness can be simultaneously ensured in the sliding mode phase. Corresponding comparative simulation and experimental results demonstrate the effectiveness and superiorities of our proposed method over the existing control methods.  相似文献   

17.
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small.  相似文献   

18.
This paper presents a motion coordination of a two-cooperating robot arm when there are unknown system parameters and bounded input disturbances. The order of the model of the two-arm system is reduced. To control this, a force/position control scheme based on an inverse dynamics control scheme is devised. On the top of the control scheme, an adaptive control scheme to take care of parametric uncertainties, and a robust control scheme to compensate coupling forces between two arms and input disturbances are devised. The adaptive and the robust control scheme are derived based on a devised Lyapunov function. The adaptive control algorithm is practical since it does not require the feedback of the second derivative of joint angles and interacting forces. The robust control scheme guarantees that the tracking error of the leader arm and the interacting forces between two arms are confined in a certain region. Numerical examples using dual 3 degree of freedom robot arm are shown.  相似文献   

19.
Based on the universal approximation property of the fuzzy-neural networks, an adaptive fuzzy-neural observer design algorithm is studied for a class of nonlinear SISO systems with both a completely unknown function and an unknown dead-zone input. The fuzzy-neural networks are used to approximate the unknown nonlinear function. Because it is assumed that the system states are unmeasured, an observer needs to be designed to estimate those unmeasured states. In the previous works with the observer design based on the universal approximator, when the dead-zone input appears it is ignored and the stability of the closed-loop system will be affected. In this paper, the proposed algorithm overcomes the affections of dead-zone input for the stability of the systems. Moreover, the dead-zone parameters are assumed to be unknown and will be adjusted adaptively as well as the sign function being introduced to compensate the dead-zone. With the aid of the Lyapunov analysis method, the stability of the closed-loop system is proven. A simulation example is provided to illustrate the feasibility of the control algorithm presented in this paper.  相似文献   

20.
In this paper, a miniature methanol fuel processor and its controller design is introduced for onboard hydrogen production. The hydrogen is generated via autothermal reforming of methanol. The control scheme consists of a hydrogen flow rate controller and a reforming temperature controller. To deal with uncertain system dynamics and external disturbance, an adaptive sliding mode control algorithm is adopted as the hydrogen flow rate controller for regulating hydrogen flow rate by manipulating methanol flow rate. Additionally, a high-gain observer is implemented to estimate the unmeasurable system state. The stability of closed-loop system is guaranteed by standard Lyapunov analysis. Furthermore, a variable ratio control law is employed as the reforming temperature controller to achieve steady reforming temperature by adjusting the reforming air flow rate. Finally, the effectiveness of the entire system is testified by experimental means.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号