首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. In breast cancer cells the predominant effect of synthetic progestins is long-term growth inhibition and arrest in G1 phase. Progestin-mediated growth arrest of T-47D breast cancer cells was preceded by inhibition of cyclin D1-Cdk4, cyclin D3-Cdk4, and cyclin E-Cdk2 kinase activities in vitro and reduced phosphorylation of pRB and p107. This was accompanied by decreases in the expression of cyclins D1, D3, and E, decreased abundance of cyclin D1- and cyclin D3-Cdk4 complexes, increased association of the cyclin-dependent kinase (CDK) inhibitor p27 with the remaining Cdk4 complexes, and changes in the molecular masses and compositions of cyclin E complexes. In control cells cyclin E eluted from Superdex 200 as two peaks of approximately 120 and approximately 200 kDa, with the 120-kDa peak displaying greater cyclin E-associated kinase activity. Following progestin treatment, almost all of the cyclin E was in the 200-kDa, low-activity form, which was associated with the CDK inhibitors p21 and p27; this change preceded the inhibition of cell cycle progression. These data suggest preferential formation of this higher-molecular-weight, CDK inhibitor-bound form and a reduced number of cyclin E-Cdk2 complexes as mechanisms for the decreased cyclin E-associated kinase activity following progestin treatment. Ectopic expression of cyclin D1 in progestin-inhibited cells led to the reappearance of the 120-kDa active form of cyclin E-Cdk2 preceding the resumption of cell cycle progression. Thus, decreased cyclin expression and consequent increased CDK inhibitor association are likely to mediate the decreases in CDK activity accompanying progestin-mediated growth inhibition.  相似文献   

2.
RhoA has been identified as an important regulator of cell proliferation. We recently showed that the Ras/RhoA pathway regulates the degradation of p27(Kip) and the progression of Chinese hamster embryo fibroblasts (IIC9 cells) through G1 into S phase (Weber, J. D., Hu, W., Jefcoat, S. C., Raben, D. M., and Baldassare, J. J. (1997) J. Biol. Chem. 272, 32966-32971). In this report, we have demonstrated that, in IIC9 cells, RhoA regulates cyclin E/CDK2 activity, which is required for p27(Kip) degradation. As previously shown in several fibroblasts cell lines, expression of dominant-negative CDK2 in IIC9 cells blocked serum-induced cyclin E/CDK2 activity and p27(Kip) degradation. In the absence of serum, expression of constitutively active RhoA(63) resulted in significant stimulation of cyclin E/CDK2 activity and degradation of p27(Kip). Cotransfection of dominant-negative CDK2 and RhoA(63) inhibited RhoA(63)-induced cyclin E/CDK2 activity and p27(Kip) degradation. In addition, expression of dominant-negative RhoA blocked serum-induced cyclin E/CDK2 activity and p27(Kip) degradation. Finally, expression of catalytically active cyclin E/CDK2 rescued the effect of expression of dominant-negative RhoA. Taken together, these data show that RhoA regulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity.  相似文献   

3.
Exposure of CV-1P cells to hypoxic conditions results in reversible cell cycle arrest concomitant with accumulation of pRB in the hypophosphorylated, growth suppressive form. Similar to cell cycle arrest induced by serum starvation, we show here that hypoxia-induced arrest is accompanied by a decrease in pRB-directed CDK4 and CDK2 activities, lower cyclin D and E protein levels, and by an increase in p27 protein abundance. Immunoprecipitation studies reveal an increase in p27 association with cyclin E-CDK2 complexes. In contrast to cell cycle arrest induced by serum starvation, hypoxia increases PP1-mediated pRB dephosphorylation. These data reveal that synergy between decreased pRB-directed cyclin/CDK activity and increased pRB-directed phosphatase activity contribute towards inducing and maintaining pRB in its hypophosphorylated, growth suppressive state during hypoxia.  相似文献   

4.
There is an increasing interest in identifying potent cancer preventive and therapeutic agents against breast cancer. Silymarin, a flavonoid antioxidant isolated from milk thistle, exerts exceptionally high to complete anticarcinogenic effects in tumorigenesis models of epithelial origin. In this study, we investigated the anticarcinogenic effect of silymarin and associated molecular mechanisms, using human breast carcinoma cells MDA-MB 468. Silymarin treatment resulted in a significantly high to complete inhibition of both anchorage-dependent and anchorage-independent cell growth in a dose- and time-dependent manner. The inhibitory effects of silymarin on cell growth and proliferation were associated with a G1 arrest in cell cycle progression concomitant with an induction of up to 19-fold in the protein expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21. Following silymarin treatment of cells, an incremental binding of Cip1/p21 with CDK2 and CDK6 paralleled a significant decrease in CDK2-, CDK6-, cyclin D1-, and cyclin E-associated kinase activity with no change in CDK2 and CDK6 expression but a decrease in G1 cyclins D1 and E. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against breast cancer and that this effect possibly involves an induction of Cip1/p21 by silymarin, which inhibits the threshold kinase activities of CDKs and associated cyclins, leading to a G1 arrest in cell cycle progression.  相似文献   

5.
Depletion of guanine nucleotide pools after inhibition of inosine monophosphate dehydrogenase (IMPDH) potently inhibits DNA synthesis by arresting cells in G1 and has been shown to induce the differentiation of cultured myeloid and erythroid cell lines, as well as chronic granulocytic leukemic cells after blast transformation. Inhibitors of IMPDH are also highly effective as immunosuppressive agents. The mechanism underlying these pleiotropic effects of depletion of guanine nucleotides is unknown. We have examined the effects of mycophenolic acid (MPA), a potent IMPDH inhibitor, on the cell cycle progression of activated normal human T lymphocytes. MPA treatment resulted in the inhibition of pRb phosphorylation and cell entry into S phase. The expression of cyclin D3, a major component of the cyclin-dependent kinase (CDK) activity required for pRb phosphorylation, was completely abrogated by MPA treatment of T cells activated by interleukin-2 (IL-2) and leucoagglutinin (PHA-L), whereas the expression of cyclin D2, CDK6, and CDK4 was more mildly attenuated. The direct kinase activity of a complex immunoprecipitated with anti-CDK6 antibody was also inhibited. In addition, MPA prevented the IL-2-induced elimination of p27(Kip1), a CDK inhibitor, and resulted in the retention of high levels of p27(Kip1) in IL-2/PHA-L-treated T cells bound to CDK2. These results indicate that inhibition of the de novo synthesis of guanine nucleotides blocks the transition of normal peripheral blood T lymphocytes from G0 to S phase in early- to mid-G1 and that this cell cycle arrest results from inhibition of the induction of cyclin D/CDK6 kinase and the elimination of p27(Kip1) inhibitory activity.  相似文献   

6.
In this report, we studied the effect of phosmidosine, a proline-containing nucleotide on the serum-induced cell cycle progression in human lung fibroblast WI-38 cells. Phosmidosine suppressed S-phase entry and arrested cell cycle progression at the G1 phase. In serum-stimulated cells, phosmidosine did not affect the activation of the mitogen-activated protein kinase cascade. However, phosmidosine inhibited hyperphosphorylation of retinoblastoma (RB) protein by RB-kinases such as cyclin-dependent kinase 4 and cyclin-dependent kinase 2, probably as a result of the inhibition of cyclin D1 expression. Furthermore, in tsFT210 cells, a temperature-sensitive cdc2 mutant isolated from the mouse mammary carcinoma cell line FM3A, phosmidosine, irreversibly inhibited the cell cycle progression at G1 without affecting the G2 to M transition. Phosmidosine acts at an earlier point in G1 compared with mimosine or aphidicolin, well-known cell cycle blockers at the G1-S boundary. Taken together, phosmidosine arrested cells at a specific point between the start point and restriction point in G1 and is a useful drug that may contribute to the understanding of the regulatory mechanisms of G1 progression.  相似文献   

7.
The alpha 5 alpha 1 integrin, a fibronectin receptor, has been implicated in the control of cell growth and the regulation of gene expression. We report that disruption of ligation between alpha 5 alpha 1 and fibronectin by integrin alpha 5 subunit or fibronectin monoclonal antibodies stimulated DNA synthesis in growth-arrested FET human colon carcinoma cells. This stimulation only occurred when monoclonal antibody was added in the early G1 phase of the cell cycle after release from quiescence by fresh medium. Stimulation of DNA synthesis by alpha 5 or fibronectin antibody was concentration- and time-dependent. FET cells expressed alpha 4 beta 1 integrin (another fibronectin receptor); however, addition of anti-human integrin alpha 4 monoclonal antibody had no effect on DNA synthesis. Treatment with alpha 5 monoclonal antibody led to a marked increase in the expression of CDK4 in G1 phase of the cell cycle and consequently increased the phosphorylation of retinoblastoma protein. alpha 5 monoclonal antibody treatment increased both cyclin A- and cyclin E-associated kinase activity which was accompanied by increased protein levels of CDK2 and cyclin A. Western blotting of immunoprecipitates demonstrated increased CDK2-cyclin E and CDK2-cyclin A complexes in cells treated with alpha 5 monoclonal antibody. Furthermore, disruption of alpha 5 alpha 1/fibronectin ligation activated mitogen-activated protein kinase p44 and p42 (extracellular signal-regulated kinase 1 and 2). Pretreatment of the cells with a specific inhibitor of MEK-1, PD98059, blocked the alpha 5 monoclonal antibody-induced mitogen-activated protein kinase activity. In addition PD98059 prevented alpha 5 monoclonal antibody-induced DNA synthesis. Since alpha 5 alpha 1 ligation to fibronectin is associated with decreased growth parameters, our results indicate that ligation of alpha 5 alpha 1 integrin to fibronectin results in suppressed mitogen-activated protein kinase activity which in turn inhibits cyclin-dependent kinase activity in growth-arrested cells.  相似文献   

8.
Cell adhesion has an essential role in regulating proliferation during the G1 phase of the cell cycle, and loss of this adhesion requirement is a classic feature of oncogenic transformation. The appearance of cyclin A messenger RNA and protein in late G1 was dependent on cell adhesion in both NRK and NIH 3T3 fibroblasts. In contrast, the expression of Cdc2, Cdk2, cyclin D1, and cyclin E was independent of adhesion in both cell lines. Transfection of NRK cells with a cyclin A complementary DNA resulted in adhesion-independent accumulation of cyclin A protein and cyclin A-associated kinase activity. These transfected cells also entered S phase and complete multiple rounds of cell division in the absence of cell adhesion. Thus, cyclin A is a target of the adhesion-dependent signals that control cell proliferation.  相似文献   

9.
UCN-01 (7-hydroxyl-staurosporine) was originally isolated as a Ca2+- and phospholipid-dependent protein kinase C selective inhibitor and now is being developed as an anticancer agent. Results from our and other laboratories have suggested that UCN-01 induces preferential G1-phase accumulation in several human tumor cell lines tested. To elucidate this mechanism, we examined the effects of UCN-01 on several cell cycle-regulatory proteins critical for G1-S-phase transition in p53-mutated human epidermoid carcinoma A431 cells. After 24 h exposure at around 50% growth-inhibitory concentrations (IC50s), 260 and 520 nM, UCN-01 induced the accumulation of pRb (the dephosphorylated retinoblastoma protein form). The protein expression of cyclin A but not cyclin E was markedly reduced and that of cyclin D1 was partially reduced under the same condition. UCN-01 also showed the concentration-dependent inhibitions of the activity of cyclin-dependent kinase 2 (CDK2) using histone H1 and pRb as substrates in vitro (IC50, 530 and 640 nM, respectively). In addition, CDK2 activities of the cells pretreated with UCN-01 for 24 h at 260 and 520 nM were markedly inhibited, giving IC50s of far less than 260 nM. When the same cell lysates were analyzed by Western blotting for CDK2, the lower band (e.g., active and phosphorylated CDK2) was remarkably reduced, in accordance with the reduced activity. Furthermore, UCN-01 induced the expression of the CDK inhibitor p21 protein and its complex formation with CDK2 after 24 h exposure at 260 and 520 nM, whereas the expression level was very low or undetectable in untreated or DNA-damaged cells. The increase of p21 mRNA levels was also induced under the same condition. UCN-01 further increased luciferase activities in A431 cells transiently transfected with p21 promoter-luciferase reporter plasmid after 24 h exposure at 260 and 520 nM. UCN-01 also increased the expression of the CDK inhibitor p27 protein after 24 h exposure at 260 and 520 nM. These results suggest that G1-phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitors p21 and p27.  相似文献   

10.
11.
Cyclin D2 is a member of the family of D-type cyclins that is implicated in cell cycle regulation, differentiation, and oncogenic transformation. To better understand the role of this cyclin in the control of cell proliferation, cyclin D2 expression was monitored under various growth conditions in primary human and established murine fibroblasts. In different states of cellular growth arrest initiated by contact inhibition, serum starvation, or cellular senescence, marked increases (5- to 20-fold) were seen in the expression levels of cyclin D2 mRNA and protein. Indirect immunofluorescence studies showed that cyclin D2 protein localized to the nucleus in G0, suggesting a nuclear function for cyclin D2 in quiescent cells. Cyclin D2 was also found to be associated with the cyclin-dependent kinases CDK2 and CDK4 but not CDK6 during growth arrest. Cyclin D2-CDK2 complexes increased in amounts but were inactive as histone H1 kinases in quiescent cells. Transient transfection and needle microinjection of cyclin D2 expression constructs demonstrated that overexpression of cyclin D2 protein efficiently inhibited cell cycle progression and DNA synthesis. These data suggest that in addition to a role in promoting cell cycle progression through phosphorylation of retinoblastoma family proteins in some cell systems, cyclin D2 may contribute to the induction and/or maintenance of a nonproliferative state, possibly through sequestration of the CDK2 catalytic subunit.  相似文献   

12.
13.
We report here the cloning and characterization of human and mouse cyclin E2, which define a new subfamily within the vertebrate E-type cyclins, while all previously identified family-members belong to the cyclin El subfamily. Cyclin E2/CKD2 and cyclin E/CDK2 complexes phosphorylate histone H1 in vitro with similar specific activities and both are inhibited by p27Kip1. Cyclin E2 mRNA levels in human cells oscillate throughout the cell cycle and peak at the G1/S boundary, in parallel with the cyclin E mRNA. In cells, cyclin E2 is complexed with CDK2, p27 and p21. Like cyclin E, cyclin E2 is an unstable protein in vivo and is stabilized by proteasome inhibitors. Cyclin E2-associated kinase activity rises in late G1 and peaks very close to cyclin E activity. In two malignantly transformed cell lines, cyclin E2 activity is sustained throughout S phase, while cyclin E activity has already declined and cyclin A activity is only beginning to rise. We speculate that cyclin E2 is not simply redundant with cyclin E, but may regulate distinct rate-limiting pathway(s) in G1-S control.  相似文献   

14.
Recent evidence has suggested that human cyclin-dependent kinase 2 (CDK2) is an essential regulator of cell cycle progression through S phase. CDK2 is known to complex with at least two distinct human cyclins, E and A. The kinase activity of these complexes peaks in G1 and S phase, respectively. The vertebrate CDC2/cyclin B1 complex is an essential regulator of the onset of mitosis and is inhibited by phosphorylation of CDC2 on Thr-14 and Tyr-15. In vitro, CDC2/cyclin B1 is activated by treatment with the members of the Cdc25 family of phosphatases. We found that, like CDC2, CDK2 is also phosphorylated on Thr-14 and Tyr-15 and that treatment of cyclin A or cyclin E immunoprecipitates with bacterially expressed Cdc25M2 (the mouse homolog of human CDC25B) increased the histone H1 kinase activity of these immune complexes 5- to 10-fold. Tryptic peptide mapping demonstrated that Cdc25M2 treatment of cyclin A or cyclin B1 immune complexes resulted in the specific dephosphorylation of Thr-14 and Tyr-15 on CDK2 or CDC2, respectively. Thus, we have confirmed that Cdc25 family members comprise a class of dual-specificity phosphatases. Furthermore, our data suggest that the phosphorylation and dephosphorylation of CDKs on Thr-14 and Tyr-15 may regulate not only the G2/M transition but also other transitions in the cell cycle and that individual cdc25 family members may regulate distinct cell cycle checkpoints.  相似文献   

15.
The G1 cyclins, cyclin D1 and E, are rate limiting for progression through G1 phase of the cell cycle in breast epithelial cells and are oncogenic when expressed in the mammary epithelium of transgenic mice. These genes are frequently overexpressed in clinical breast cancer where overexpression appears to be associated with specific disease phenotypes, altered responsiveness to therapeutic intervention and patient survival. In order to investigate the functional correlates of cyclin D1 and cyclin E overexpression we employed a panel of normal, immortalized and neoplastic breast epithelial cell lines to examine the relationships between cyclin gene expression, cyclin-CDK complex formation and CDK activity. In agreement with earlier studies cyclin D1 and E expression varied over an approximately tenfold range among the 18 cell lines studied. There was no apparent relationship, however, between cyclin D1 expression and the in vitro activity of its major kinase partner, Cdk4, although MDA-MB-134 cells displayed the highest level of both cyclin D1 expression and Cdk4 activity. Similarly, there was no significant relationship between cyclin E expression and cyclin E-Cdk2 activity. Fractionation of whole cell lysates by gel filtration chromatography revealed that approximately 90% of the cyclin E protein was present in inactive complexes containing the CDK inhibitors p21 and p27. Much of the small fraction of active cyclin E protein was of very high apparent molecular mass, >400 kDa, suggesting that formation of these complexes is a more important determinant of cyclin E-Cdk2 activity than cyclin E abundance. These data suggest that properties of cyclins D1 and E in addition to their ability to activate Cdk4 and Cdk2 may contribute to the effects of overexpression on the breast cancer phenotype.  相似文献   

16.
17.
A novel cyclin gene was discovered by searching an expressed sequence tag database with a cyclin box profile. The human cyclin E2 gene encodes a 404-amino-acid protein that is most closely related to cyclin E. Cyclin E2 associates with Cdk2 in a functional kinase complex that is inhibited by both p27(Kip1) and p21(Cip1). The catalytic activity associated with cyclin E2 complexes is cell cycle regulated and peaks at the G1/S transition. Overexpression of cyclin E2 in mammalian cells accelerates G1, demonstrating that cyclin E2 may be rate limiting for G1 progression. Unlike cyclin E1, which is expressed in most proliferating normal and tumor cells, cyclin E2 levels were low to undetectable in nontransformed cells and increased significantly in tumor-derived cells. The discovery of a novel second cyclin E family member suggests that multiple unique cyclin E-CDK complexes regulate cell cycle progression.  相似文献   

18.
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.  相似文献   

19.
BACKGROUND/AIMS: A checkpoint mechanism in late G1, whose regulation via loss of retinoblastoma protein (pRB) or p16, or overexpression of cyclin D1 or cyclin dependent kinase 4 (CDK4), has been proposed to constitute a common pathway to malignancy. The aims of this study were (a) to compare markers of cell cycle G1-S phase transition in an intraocular tumour with known pRB deficiency (retinoblastoma) and compare it with one with an apparently functional pRB (uveal melanoma); (b) to determine if one of these markers may have a role in the pathogenesis of uveal melanoma; and (c) to determine if there is a difference in cell cycle marker expression following treatment of uveal melanoma and retinoblastoma. METHODS: 90 eyes were enucleated from 89 patients for retinoblastoma (n = 24) or for choroidal or ciliary body melanoma (n = 66). Conventional paraffin sections were assessed for cell type and degree of differentiation. Additional slides were investigated applying standard immunohistochemical methods with antibodies specific for cyclin D1 protein, pRB, p53, p21, p16, BCL-2, and MIB-1. RESULTS: Cyclin D1 protein and pRB were negative in retinoblastoma using the applied antibodies. In contrast, cyclin D1 protein expression was observed in 65% of uveal melanomas; a positive correlation between cyclin D1 cell positivity and tumour cell type, location, growth fraction, as well as with pRB positivity was observed. p53, p21, and p16 could be demonstrated in both tumours. An inverse relation between p53 and p21 expression was demonstrated in most choroidal melanomas and in some retinoblastomas. Apart from a decrease in the growth fractions of the tumours as determined by MIB-1, a significant difference in the expression of G1-S phase transition markers in vital areas of uveal melanoma and retinoblastoma following treatment with radiotherapy and/or chemotherapy was not observed. CONCLUSION: Retinoblastomas and uveal melanomas, two tumours of differing pRB status, differ also in their immunohistochemical pattern for markers of the G1-S phase transition of the cell cycle. The results of the present study support the concept of (a) an autoregulatory loop between pRB and cyclin D1 in tumours with a functional pRB and the disruption of this loop in the presence of pRB mutation, as well as (b) a checkpoint mechanism in late G1, whose regulation via loss of p16 or pRB, or overexpression of cyclin D1 constitutes a common pathway to malignancy. Further, the results raise the possibility of cyclin D1 overexpression having a role in the pathogenesis of uveal melanoma.  相似文献   

20.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号