首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new method of physical modification of starch in the presence of high concentrated salt solution is presented, called “Osmotic Pressure Treatment” (OPT). OPT was introduced in order to produce the same physically modified products as obtained by conventional heat‐moisture treatment (HMT) of starch. Potato starch was selected for the comparative study of the two methods. For the OPT method, potato starch was suspended in a saturated solution of sodium sulfate and heated in an autoclave at 105°C and 120°C ,which corresponded to the calculated osmotic pressures of 328 and 341 atm (332 and 345 bar, respectively) (assuming sodium sulfate dissociates completely) for 15, 30 and 60 min, respectively. For the HMT method, starch with 20% moisture content was placed in a Duran bottle, then the same heat treatment method in the autoclave was applied. Light and scanning electron microscopy (SEM) showed that OPT of starch changed the shape of the starch granules to a folded structure, while the starches remained unchanged after HMT. The RVA viscogram for the OPT starch exhibited a decrease in the peak viscosity without a breakdown and an increase of the pasting temperature when increasing the temperature and time, which was in an agreement with the viscosity patterns for the HMT starches. X‐ray diffraction patterns were altered from B to A+B for the HMT and from B to A type for the OPT starch when treated at 120°C. After OPT, the gelatinization temperatures (To, Tp, and Tc) of the starch increased significantly with increasing temperature and time, whereas only the Tc of starch increases after HMT. The biphasic broadening of the peaks (high TcTo) can be explained by an inhomogeneous heat transfer during HMT. Narrow peaks in the DSC curve can be an indication for a better homogeneity of the OPT samples. However, both methods provide a similar decrease in the gelatinization enthalpy (ΔH). The amylose‐amylopectin ratio calculated from the HPSEC patterns was strongly increased for HMT starches at 105°C for 60 min and 120°C for 30 min and decreased after treatment at 120°C for 60 min. For OPT starches the ratio was strongly increased at 120°C for 15 min and decreased after prolong heating. The OPT provides a uniform heat distribution in the starch suspension. This allows the modified starch to be produced on a larger scale.  相似文献   

2.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

3.
The effect of heat‐moisture treatment (HMT) on the properties of pinhão starches under different moisture and heat conditions was investigated. The starches were adjusted to 15, 20 and 25% moisture levels and heated to 100, 110 and 120°C for 1 h. The X‐ray diffractograms, swelling power, solubility, gel hardness, pasting properties and thermal properties of the native and HMT pinhão starches were evaluated. Compared to native starch, there was an increase in the X‐ray intensity and gel hardness of HMT starches, with the exception of the 25% moisture‐treated and 120°C heat‐treated starch. HMT reduced the swelling power and solubility of the pinhão starches when compared to native starch. There was an increase in the pasting temperature, final viscosity and setback and a decrease in the peak viscosity and breakdown of HMT pinhão starches compared to native starch. HMT increases the gelatinisation temperature of native pinhão starch and reduces gelatinisation enthalpy.  相似文献   

4.
Starches from glutinous rice (1.4% amylose), Jasmine rice (15.0% amylose) and Chiang rice (20.2% amylose) were exposed to heat‐moisture treatment (HMT) at 100 °C for 16 h and at different moisture levels (18, 21, 24 and 27%). The effect of heat‐moisture treatment on structural and thermal properties of these three rice starches was investigated. The HMT did not change the size, shape and surface characteristics of rice starch granules. The A‐type crystalline pattern of rice starches remained unchanged after HMT. The relative crystallinity (RC) and the ratio of short‐range molecular order to amorphous (RSA) of heat‐moisture treated glutinous and Jasmine rice starches decreased with increasing moisture level of the treatments. In contrast, the RC of the treated Chiang rice starch remained practically unchanged. A peak of crystalline V‐amylose‐lipid complexes was clearly presented in all treated Chiang rice starches. The peak became progressively stronger with increasing moisture level of the treatment. Differential scanning calorimetry (DSC) of all treated rice starches showed a shift of the gelatinization temperature to higher values. Increasing moisture level of the treatments increased the onset gelatinization temperature (To) but decreased the gelatinization enthalpy (ΔH) of rice starches. A broad gelatinization temperature range (TcTo) with a biphasic endotherm was found for all treated Chiang rice starches and Jasmine rice starch after HMT27 (HMT at 27% moisture level). Additionally the (TcTo) of treated Chiang rice starches increased linearly with increasing moisture level of the treatments.  相似文献   

5.
Water chestnut starch was subjected to acid modification and heat‐moisture treatment. Hydrochloric acid was used for acid modification at three different concentrations (0.25 M, 0.5 M and 1 M) for 2 h. Modifications did not alter the granule morphology. Heat‐moisture treatment (HMT) resulted in slight reduction in the granular size of the starch granules. Acid modification lowered the amylose content, swelling power, water‐ and oil‐binding capacity but improved the solubility of starch to a considerable level. Light transmittance of acid‐modified (AM) starches improved significantly. A significant reduction in peak, trough, final and setback viscosity was observed by acid‐thinning. In case of heat‐moisture treated starch the final viscosity (Fv) was found to be even higher than the peak viscosity (Pv). Native water chestnut starch exhibited a lower onset temperature (To) and peak temperature (Tp) of gelatinization than the corresponding acid‐treated starches. Starch films prepared from native starch exhibited excellent pliability, whereas those prepared from AM and HMT starches showed good tensile strength. Starch films prepared from acid‐treated starches provided better puncture and tensile strength.  相似文献   

6.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   

7.
The aim of this work was to study the effects of heat‐moisture treatment (27% moisture, 100°C, 16 h) and of enzymatic digestion (alpha‐amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat‐moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X‐ray pattern from B‐ to A‐type. HMT of SP and G starch did not change the X‐ray pattern (A‐type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.  相似文献   

8.
Cassava, sweet potato and arrowroot starches have been subjected to heat‐moisture treatment (HMT) under different conditions using a response surface design of the variables. A comparative study was performed on the pasting properties, swelling behaviour and the gelatinization properties of the modified starches and also on the rheological and textural properties of their pastes. X‐ray diffraction studies have shown that cassava starch exhibited a slight decrease in crystallinity, whereas sweet potato and arrowroot starches showed an increase in crystallinity after HMT at 120ºC for 14 h with 20% moisture. The swelling volume was reduced and the solubility was enhanced for all three starches after HMT, but both effects were more pronounced in the case of arrowroot starch. The decrease in paste clarity of the starch after HMT was higher in the case of cassava and sweet potato starches. Viscosity studies showed that the peak viscosity of all three starches decreased after HMT, but the paste stability increased as seen from the reduced breakdown ratio and setback viscosity. Studies on rheological properties have shown that storage and loss moduli were higher for the starches heat‐moisture treated at higher moisture and lower temperature levels than the corresponding native starches. Storage of the gel at ‐20ºC resulted in a significant increase in storage modulus for all the three starches. All the textural parameters of the gels were altered after the treatment which depended on the nature of the starch and also the treatment condition.  相似文献   

9.
Starches were separated from indica rice cultivars (PR‐113, Basmati‐370, Basmati‐386, PR‐115, IR‐64, and PR‐103) and evaluated using gel permeation chromatography (GPC), X‐ray diffraction, differential scanning calorimetry (DSC) and dynamic viscoelasticity . Debranching of starch with isoamylase and subsequent fractionation by GPC revealed 9.7–28.3% apparent amylose content, 3.7–5.0% intermediate fraction (mixture of short amylose and long side‐chains of amylopectin), 20.6–26.6% long side‐chains of amylopectin and 45.8–59.4% short side‐chains of amylopectin). IR‐64 starch with the highest crystallinity had the highest gelatinization temperatures and enthalpy, To, Tp, Tc, and ΔHgel being 71.8, 75.9, 82.4°C and 5.1 J/g, respectively, whereas PR‐113 starch with lower crystallinity showed the lowest gelatinization temperatures (To, Tp, Tc, of 60.8, 65.7 and 72.2°C, respectively). Basmati‐386 starch exhibited two endotherms during heating, the first and second endotherm being associated with the melting of crystallites and amylose‐lipid complexes, respectively. To, Tp, Tc and ΔHgel of the second endotherm of Basmati‐386 starch were 99.0, 100.1, 101.1°C and 2.0 J/g, respectively. During cooling, Basmati‐386 also showed an exotherm at a peak temperature of 87°C. PR‐113 starch with the highest amylose content and the lowest content of short side‐chains of amylopectin had the highest peak storage modulus (G′= 1.6×104 Pa). The granules of PR‐113 starch were the least disintegrated after heating. The effects of heating starch suspensions at different temperatures (92°C, 130°C and 170°C) on intrinsic viscosity [η], transmittance and viscoelasticity were also studied to evaluate the extent of breakdown of the molecular structure. The intrinsic viscosity of starch suspensions heated at 92, 130 and 170°C ranged between 103–114, 96–110 and 28–93 mL/g. Transmittance value of starches cooked at 92°C decreased with increase in storage duration. All starches except PR103, cooked at 130°C also showed decrease in transmittance during storage, however, at lower rate. PR103 starch heated at 130°C did not show any change in transmittance up to a storage time of 48 h. The changes in viscoelasticity of starch pastes cooked at different temperatures during cooling and reheating were also evaluated. G′ and G′′ increased with decrease in temperature during cooling cycle. Starches heated at 130°C with apparent amylose content ≤ 21.2% showed an improvement in G′ and G′′ in comparison to the corresponding starches heated at 92°C, this improvement was observed to be higher in starches with lower amylose content. All starches heated at 170°C had a higher proportion of breakdown in molecular structure as indicated by lower G′ and G′′ than the same starches heated at 130 and 92°C.  相似文献   

10.
The molecular and physicochemical properties of the studied starches modified with 0.36% HCl in methanol at 25 °C and 45 °C were related to the film properties of these starches. The weight‐averaged molecular weight (Mw) and the number of long‐chain branches (DP 13‐36) of HCl‐methanol modified starch decreased with increasing degree of acid modification, but the number of short‐chain branches (DP < 6) increased. HCl‐methanol modification significantly decreased the ghost formation in gelatinized starch dispersions and the viscosity of starch film‐forming dispersions. Thus, the homogeneity of the produced starch films was improved and their opacity reduced. Proper HCl‐methanol modification produced corn starch films with lower moisture absorption rate and maximum moisture content under high relative humidity (RH = 97%) condition.  相似文献   

11.
The physicochemical and scanning electron micrograph characteristics of Radix Cynanchi bungei (RCb) starch were investigated. RCb starch presented an apparent amylose content of 20.1%, less than that of potato starch (23.6%), with a granule size ranging from 5 to 15 μm with round, spherical and polygonal shapes and B‐type X‐ray diffraction pattern. The RVA pasting properties of RCb starch were similar to those of potato starch, with pasting temperature of 60.8°C, lower than that of potato starch (64.3°C). The gelatinization parameters of RCb starch were found to be 55.9°C (To), 60.0°C (Tp), 66.6°C (TC) and 13.2 J/g (ΔH) while those of potato starch were 58.9°C, 63.5°C, 68.6°C and 13.2 J/g. Both RCb and potato starch pastes behaved as high shear‐thinning liquids. RCb starch pastes had lower apparent viscosity than potato starch pastes at the same shear rate.  相似文献   

12.
In this study, graft copolymerization of N‐vinylpyrrolidone (N‐VP) onto starch was carried out in an aqueous medium using azobisisobutyronitrile (AIBN) as initiator. The variables affecting the graft copolymerization, such as monomer and initiator concentrations, reaction time and temperature, were thoroughly examined. In general, grafting of N‐vinylpyrrolidone onto starch increased with the increase in time and monomer concentration up to a certain value and then leveled off. Similarly, increase both in initiator concentration and temperature first favored and than impeded the grafting reaction. Optimum conditions established for grafting were as follows: N‐VP = 0.7 M, AIBN = 1.5×10‐3 M, T = 70°C and t = 5 h. Structural changes of the grafted starch were followed by FTIR, intrinsic viscosity and water absorption capacity studies.  相似文献   

13.
The mixing of dry starch with 40 or 99% (v/v) formic acid (FA) produces an O‐formylation reaction which causes a combination of acid hydrolysis and starch destructuration. Moreover, this esterification reaction is highly exothermic in the presence of pure FA. When O‐formylation is performed at temperatures higher than 20°C, starch formate content is high (degree of substitution, DS, of 2.15 after 60 min at 105°C) but then molecular weight decreases (ηred ≶ 10 mL/g). Under thermally‐controlled conditions at 20°C in formic acid, degrees of substitution reach 1.5–1.6 after 6 h reaction times and polymer degradation seems to be limited (ηred = 110 to 140 mL/g). The degrees of substitution obtained in water/formic acid mixtures are below those in formic acid alone. The level of destructuration of starch in formic acid and water/formic acid mixtures was also evidenced by dynamic rheological measurements and optical microscopy. Plots of storage modulus (G’) versus frequency (ω) was used to characterize both the gelatinization and the gel destruction processes as a function of reaction temperature (Tr) and FA concentration.  相似文献   

14.
Cassava starch was debranched using pullulanase and the linear glucans recrystallized by incubation at 60°C or by temperature cycling at 120/60°C, and further subjected to heat‐moisture treatment (HMT). Resistant starch (RS III) contents increased from 21.4 g/100 g in the debranched starch (DS) to 67.3 g/100 g in the debranched starch incubated at 60°C (DRS) and 47.8 g/100 g in the debranched starch subjected to temperature cycling (DCS), and further to 84.8 g/100 g and 88.4% g/100 g in HMT‐DRS and HMT‐DCS, respectively. Total crystallinity varied between 31.4‐59.8% and the crystalline type was C in DS and DRS and A in DCS, HMT‐DRS and HMT‐DCS. The melting properties were characterized by broad endotherms, but the exact melting region and enthalpy were dependent on recrystallization method. The main endothermic peaks of DS and DRS occurred at 103.9 and 109.8°C, respectively, whereas DCS exhibited split endotherms at 113.6 and 138.1°C. Heat‐moisture treatment broadened the endotherms and increased their enthalpies. Scanning electron micrographs revealed surface topography differences related to size and aggregation of individual crystalline bodies.  相似文献   

15.
Cationic sago starches were prepared using an aqueous alkaline process with different levels of cationic reagent 3‐chloro‐2‐hydroxypropyltrimethylammonium chloride (0.01–0.10 M ), sodium hydroxide (0.03–0.86 M ) and reaction temperature (30–62 °C). The degree of substitution (DS), reaction efficiency, thermal and pasting properties of cationic sago starches were analysed. Emulsifying and fat binding properties of native sago starch, cationized sago starch and commercial chitosan were compared at two different pH values (4 and 7). Degree of substitution increased with an increase in concentration of cationic reagent or NaOH, or reaction temperature. The reaction efficiency was proportional to the concentration of NaOH and reaction temperature but inversely proportional to the cationic reagent concentration. The highest DS and reaction efficiency achieved was 0.06 and 79%, respectively. The pasting temperature and gelatinization enthalpy of cationic starch (DS 0.06) were lower compared with native sago starch. Cationization increased the peak viscosity and breakdown of the starch paste but decreased the setback. The presence of cationic groups significantly increased emulsion stability, emulsion viscosity and fat binding capacity of sago starch. However, the cationic sago starch was still inferior to chitosan, which showed the highest emulsion stability, emulsion viscosity and fat binding capacity. There was no significant difference between the surface tension values of native and cationic sago starch and chitosan. The influence of pH on emulsifying properties was not significant. The emulsion stability of the cationic sago starch improved due to an increase in viscosity and fat binding capacity but not its surface active property. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Sweetpotato starches were characterized to understand the changes upon modification by acid and heat‐moisture treatment (HMT) in the rheological, differential scanning calorimetry (DSC), and textural characteristics of starch isolated from the sweetpotato variety PSP‐21 and to compare these findings with those of commercially available arrowroot starch. The native sweetpotato starch had a Type A pasting profile characterized by a high peak viscosity (PV) (741.5 rapid viscoanalyzer unit [rvu]), with a high breakdown (378.8 rvu) and low cold paste viscosity (CPV) (417.6 rvu). After HMT, there was a marked decrease in the PV (639.1), a very slight breakdown (113.5 rvu) and an increase in CPV (759.5 rvu), more like a Type C pasting profile. However, acid modification did not notably change the pasting profile of native sweetpotato starch. The DSC characteristics were also affected significantly after modifications. The gelatinization temperature parameter to onset (To) decreased significantly after HMT and acid modification. The gelatinization enthalpy decreased during HMT from 15.98 to 14.42 J/g. The gel strength of acid‐modified starch was the highest compared with that of HMT and native sweetpotato and arrowroot starches.  相似文献   

17.
Shazia Juna  Anton Huber   《Starch - St?rke》2012,64(3):171-180
The apparent average molar masses (Mw,app), apparent average radii of gyration (Rg,app), of native sago starch and fractions were determined using asymmetrical flow field‐flow fractionation coupled with multi‐angle light scattering and refractive index detectors (AF4/MALS/RI). Amylose‐type (Fraction A) and amylopectin‐type (Fraction B) were chemically separated from native sago starch. Native sago starch and Fractions (A–B) were dissolved in 1M KSCN using a high pressure microwave vessel. The effect of varying cross flow rates at a fixed channel flow rate upon the Mw,app and Rg,app distributions of native sago starch and Fractions (A–B) were investigated. The average Mw,app values of native sago starch, Fraction (A) and Fraction (B) were 60 × 106, 1.5 × 106 and 60 × 106 g/mol, respectively, with average Rg,app values of 142, 75 and 127 nm, respectively. The sphere‐equivalent hydrodynamic radii (Rh) values for native sago starch and fractions were determined from AF4 experimental parameters.  相似文献   

18.
This study was conducted to determine the gelatinisation properties of coating with sago flour compared with wheat and rice as influenced by frying temperature, pressure and time. Chicken nuggets were immersed in sago, rice or wheat flour batters and fried at temperatures of 150, 165 and 180 °C and under pressures of 102 and 156 kPa for 0, 6, 18 and 30 s. Results showed that To of coatings from sago flour ranged from 71.8 to 74.7 °C. To of coatings from wheat flour ranged from 58.2 to 61.2 °C, while that of coatings from rice flour ranged from 77.9 to 78.6 °C. Except for a few combinations, frying temperature and pressure used did not have any significant effects on onset (To), peak (Tp) and end (Te) temperatures. Except for a few combinations, degree of gelatinisation of coatings from sago flour was not influenced by frying temperature and pressure similar to coatings from rice and wheat flour.  相似文献   

19.
Enset starch (Ensete ventricosum, Musaceae) has been examined for its chemical composition, amylose content and physico-chemical properties. The proximate composition of the starch on dry weight basis was found to be 0.16% ash, 0.25% fat, 0.35% protein, and 99.24% starch. The amylose content was 29%. Scanning electron microscopy (SEM) of enset starch granules showed characteristic morphology that was somewhat angular and elliptical. The starch has normal granule size distribution with a mean particle size of 46μm. It exhibits typical X-ray diffraction pattern of B-type with a distinctive maximum peak at around 17° 2θ Its moisture sorption pattern was similar to that of potato starch but much higher than maize starch. DSC parameters obtained from starch-water mixtures (1:2), namely, the enthalpy of gelatinization (ΔH: 21.6mJmg−1), the onset temperature (T0: 61.8°C), the peak temperature (Tp: 65.2°C) and the endset temperature (Te: 71.7°C) were higher than those obtained for potato starch. Brabender viscosity curves of 6% starch paste showed lower peak viscosity (884 BU) than potato starch (1668 BU) but greater than maize starch (302 BU). The breakdown was also lower than potato starch but higher than maize starch. Retrogradation of enset starch was substantially greater than potato starch but less than maize starch.  相似文献   

20.
Native wheat starch contains amylose‐lipid complexes (AMLs) that are formed both upon biosynthesis of native starch and upon heating of starch slurries at gelatinization temperature and above. These complexes have a detrimental impact on physicochemical properties of starch, because they reduce water binding by starch granules and retard their swelling. An objective of the presented work was to analyze the chemical composition of wheat starch and characterize the thermodynamics of gelatinization of different wheat starches and to evaluate the stability of AMLs derived from these starches with the aid of differential scanning calorimetry (DSC). Grains of eight wheat varieties were used throughout the studies. The gelatinization behavior of the eight wheat varieties examined was similar. The lowest temperature of the onset of gelatinization (Tk = 57.07°C) was found for the Jawa variety, and the highest (Tk = 60.58°C) for the Torka variety. Enthalpy of gelatinization (ΔHk) of the examined wheat starch preparations ranged from 9.14 J/g (Sakwa) to 11.95 J/g (Elena). Temperature and enthalpy of AMLs dissociation depended on wheat starch variety. During the first heating the temperature of the minimum of the endotherm (Td) ranged from 98.41°C to 100.5°C. During the second heating, the minimum was at slightly higher temperatures, varying from 102.02°C to 104.08°C. Enthalpies of AML dissociation (ΔHd) varied from 1.45 J/g to 2.14 J/g during the first heating. During the second heating the enthalpy values were slightly lower (1.26 J/g to 1.68 J/g). Enthalpies of AML reassociation ranged from 1.29 J/g to 1.72 J/g during the first cooling, and from 1.17 J/g to 1.63 J/g during the second cooling. A correlation was found between the amount of lipids and AML content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号