首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Die kontinuierlich steigenden Anforderungen an die allgemeinen Komfortbedingungen in Verbindung mit einer immer weiter wachsenden Nachfrage nach den unterschiedlichsten Wellness‐Angeboten führen sowohl im Hotel‐ und Touristikgewerbe als auch im privaten Bereich zu umfangreichen Neu‐ und Umbaumaßnahmen. Bei öffentlichen Schwimmhallen liegt das Hauptaugenmerk dabei auf geeigneten Maßnahmen zur Steigerung der Energie‐Effizienz bei gleichzeitiger Modernisierung und Attraktivierung der entsprechenden Gebäudeteile. Nun handelt es sich bei diesen Gebäuden oder Gebäudeteilen um bauliche Einrichtungen, deren Nutzung beispielsweise als Schwimmhalle, als Whirlpoolraum oder als Saunavorraum eine gegenüber den konventionellen Randbedingungen von Aufenthaltsräumen deutlich erhöhte Feuchtebelastung bedingt: Es liegen hier nicht nur gegenüber Wohngebäuden deutlich erhöhte Temperaturen und Luftfeuchten – und damit eine völlig andere Größenordnung der Wasserdampfpartialdrücke der Raumluft – sondern auch grundsätzlich andere Nutzungs‐ und Betriebszeiten vor. Damit ergibt sich dann, dass der dauerhaft schaden‐ und mängelfreie Betrieb einer solchen Einrichtung eine entsprechend angepasste Baukonstruktion der umgebenden Bauteile und somit eine spezielle fachliche Betrachtung der bauphysikalischen Randbedingungen erfordert. Während für die konventionelle Wohn‐ oder Büronutzung eines Gebäudes die bauklimatisch anzusetzenden Randbedingungen (sowie die korrespondierenden Nachweisverfahren) normativ geregelt sind und die Auswirkungen auf die entsprechende bauliche Realisierung damit mehr oder weniger geläufig sind, fehlen diese Erkenntnisse im Bereich der Feuchträume im Allgemeinen und der Schwimmhallen im Besonderen weitestgehend. External wall constructions for indoor swimming pools. The continually increasing requirements for general comfort conditions combined with an ever growing demand for the widest range of wellness facilities result in numerous new‐build and extension projects in the hotel and tourist trade as well as in private homes (example see fig. 1). With public swimming pools the focus of attention is on suitable measures to increase the energy efficiency of the relevant parts of buildings and to modernise and make them more attractive at the same time. With these buildings or parts of buildings we are dealing with buildings used as swimming pools, jacuzzis or saunas and much more exposed to the effects of moisture compared to the normal boundary conditions of recreational areas: Not only are the temperatures and humidity content much higher and therefore the partial pressures of the water vapour in the air indoors on a completely different scale, but they are generally open and used at different times. This means that the long‐term operation of such a building free of damage and shortcomings requires a correspondingly suitable construction of the surrounding components and thus a special expert assessment of the building physics boundary conditions. Whereas the boundary conditions relating to the temperature and moisture in the building (and the corresponding methods) to be applied to residential or office buildings are regulated by standards and the effects on the corresponding construction of the building in practice are therefore more or less familiar, there is a general lack of this information for indoor areas with high humidity in general and swimming pools in particular.  相似文献   

3.
4.
5.
On the fatgue strength of threaded rods. The fatigue strength of threaded rods depends on numerous parameters. An up until now little known calculation procedure is presented, which gives more realistic and detailed answers than the current method based on simplified assumptions.  相似文献   

6.
7.
8.
9.
10.
Jethro W. Meek 《Bautechnik》2007,84(3):182-189
Fatigue safety for reinforced concrete subjected to temperature stress. Fatigue‐safety analysis is sometimes design‐relevant for reinforced concrete bridges. The importance of temperature stress in statically‐indeterminate structures will be overestimated if the effective stiffness of cracked cross sections is assumed unnecessarily large and the resultant stress amplitudes are taken in full strength to be relevant for fatigue. Simple but fundamental considerations reveal the underlying physical relationships und make it possible to determine the influence of temperature stress on fatigue safety in a realistic fashion.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号