首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了淬火后不同温度回火对Si-Mn-Mo系贝氏体钢显微组织与力学性能的影响.结果表明,采用淬火后回火的工艺可以显著提高Si-Mn-Mo系贝氏体钢的强度和塑性.淬火后300℃回火与350℃回火,该钢的力学性能相差不大,而450℃回火后强度、硬度相对较低,韧塑性略有提高.组织观察表明,该钢为贝氏体铁素体和残余奥氏体(片状和块状M-A岛)的复合组织,适当温度回火可以促进块状M-A岛分解,增加板条铁素体含量,提高残余奥氏体的机械稳定性,进而稳定其组织性能..  相似文献   

2.
研究了C-Mn-Mo-Cu-Nb-Ti-B系低碳微合金钢915℃淬火和490~640℃回火的调质工艺对钢的组织及力学性能的影响.用扫描电镜和透射电镜对实验钢的组织、析出物形态和分布以及断口形貌进行观察,采用X射线衍射仪分析钢中残余奥氏体的体积分数.结果表明:调质后,实验钢获得贝氏体、少量马氏体及残余奥氏体复相组织,贝氏体板条宽度只有250 nm,残余奥氏体的体积分数随着回火温度的升高而降低,经淬火与520℃回火后残余奥氏体的体积分数为2.1%.调质后析出物的数量激增,6~15 nm的析出物占70%以上.实验钢经过915℃淬火与520℃回火后,其屈服强度达到915 MPa,抗拉强度990 MPa,-40℃冲击功为95 J.细小的析出物及窄的板条提高了钢的强度.板条间有残余奥氏体存在,改善了实验钢的韧性.   相似文献   

3.
陈光辉  徐光  胡海江  刘曼  陈鑫 《钢铁》2021,56(2):110-116
 为了研究中碳高强贝氏体钢中的残余奥氏体体积分数在不同等温情况下的变化规律,通过X射线衍射试验、热模拟试验和扫描电子显微镜观察等,分析了等温淬火条件对中碳高强贝氏体钢中残余奥氏体体积分数和组织的影响。结果表明,最终残余奥氏体的体积分数受贝氏体相变和马氏体相变的共同影响。贝氏体相变量决定了未转变奥氏体的体积分数及其化学稳定性,从而影响随后的马氏体相变量及最终残余奥氏体体积分数。此外,随着相变温度的升高,开始由于贝氏体相变量逐渐减少,残余奥氏体体积分数先增加(300~350 ℃),随后由于马氏体相变量增加,残余奥氏体体积分数减少(350~400 ℃)。  相似文献   

4.
刘曼  胡海江  田俊羽  陈光辉  徐光 《钢铁》2021,56(1):69-74
 为了研究等温淬火和淬火-配分复合工艺对中碳高强贝氏体钢组织和力学性能的影响,采用组织观察、热模拟试验、X射线衍射分析和拉伸试验等手段,阐明等温淬火和淬火-配分复合工艺处理下的组织演变和性能变化。结果表明,等温淬火结合淬火-配分工艺可以细化粗大的块状马氏体/奥氏体岛,将粗大的马奥岛组织转化为薄膜状奥氏体和贫碳马氏体。与单独贝氏体相变或单独淬火-配分处理工艺相比,等温淬火结合淬火-配分复合工艺提高了中碳钢的力学性能。此外,与单独贝氏体相变或淬火-配分工艺相比,通过等温淬火和淬火-配分复合工艺可以获得更多碳含量较高的残余奥氏体。  相似文献   

5.
研究了钒微合金化对Q-P-T工艺处理的0.28C-Si-Mn-Cr贝氏体钢组织与力学性能的影响。结果表明,试验钢在900℃奥氏体化进行淬火处理,350℃碳分配后,钢的组织由板条状马氏体、少量贝氏体及残余奥氏体组成。随着碳分配时间的延长,碳原子从板条马氏体扩散进入残余奥氏体,残余奥氏体含量增加,使得材料的塑性和韧性提高,拉伸强度下降。同时,随着钒含量增加,试验钢的拉伸强度增加,但塑性和韧性下降。在钒和Q-P-T工艺的双重作用下,含0.1%钒的中碳贝氏体钢获得了拉伸强度1375MPa、断后伸长率23.2%、冲击功值99.5J的综合力学性能。  相似文献   

6.
研究了淬火-等温-回火(Q-I-T)新工艺对60Si2CrVA弹簧钢显微组织的影响。通过残余奥氏体的测定、金相观测和TEM分析研究,结果表明:淬火-等温(Q-I)处理后获得50%~60%马氏体M(针束状)+30%~40%贝氏体B+大于10%残余奥氏体Ar组织;据统计贝氏体条宽度在100~500 nm之间,亚单元尺寸在50~250 nm之间,残余奥氏体以薄膜状分布于马氏体、贝氏体束条之间;经400℃回火后残余奥氏体大量分解,并析出部分细小碳化物。与传统淬火回火工艺相比,新工艺组织得到分割细化,并获得复相组织。  相似文献   

7.
采用中高碳C-Si-Mn-Cr贝氏体钢在Ms点稍高的温度等温,研究等温低温贝氏体的微观组织与力学性能。实验结果表明,在230℃等温时获得的贝氏体为呈细针状的低温贝氏体组织。随等温时间的增加,贝氏体含量增加,等温10h后贝氏体转变停止。钢经230℃等温处理后获得低温贝氏体和残余奥氏体的复相组织,等温8h时残余奥氏体含量达到最高值23.7%,随后逐渐下降。XRD分析发现,等温时间为12h时,残余奥氏体部分分解为碳化物。钢经10h等温处理获得较好的强韧性,硬度为56.8HRC,冲击韧性达到39J,且具有最佳的耐磨性。  相似文献   

8.
设计了马氏体起始相变温度(M_s)以上和以下2个不同温度等温淬火试验,结合热膨胀仪、扫描电镜显微组织、X光衍射和拉伸试验等试验手段,研究了对比于M_s以上温度等温淬火试验,M_s以下等温淬火对中碳贝氏体钢相变、组织和性能的影响。结果表明,贝氏体相变可以发生在M_s温度以下,且其相变动力学被明显促进。相比于M_s以上温度等温淬火,M_s温度以下等温淬火虽然可以加速相变动力学,但导致强度和伸长率下降,因此降低了最终的力学性能。这主要是因为M_s温度以下等温淬火试样组织内部出现了大量的回火无热马氏体(AM)和少量的贝氏体和残余奥氏体(RA)。因此,M_s温度以下等温淬火热处理后的组织性能未必优于M_s温度以上等温处理后组织性能,这主要取决于具体的成分和工艺。  相似文献   

9.
双相钢钢板以其碳当量低、综合性能好的优点在汽车制造中获得广泛应用。但双相钢钢板的扩孔率不够理想,在一些翻边类的应用中表现不够好。以原本用于冷轧双相钢生产的钢板为研究对象,研究不同的奥氏体等温淬火温度对试验用钢扩孔性能的影响。研究结果表明:在Ms点附近的温度区间进行等温淬火,获得回火马氏体+贝氏体的多相组织,可以得到较理想的扩孔性能;在Ms以上的较高温度区间进行奥氏体等温淬火,由于等温过程中奥氏体不能完全转变为贝氏体,在后续冷却时转变成为较多的未回火马氏体,扩孔率反而下降。  相似文献   

10.
李万东 《河南冶金》2020,28(1):18-20,29
研究了不同热处理工艺对0.29C-Mn-Si-Gr中碳贝氏体钢的组织与力学性能的影响。结果表明,空冷及油冷后的中碳钢的拉伸强度分别为1 575 MPa、1 580 MPa;随着回火温度的升高,中碳钢的塑性提高,强度下降,强度积下降,在550℃回火时出现回火脆性现象,塑性明显降低;经过淬火-碳分配(Q-P)工艺处理后的中碳钢在保证强度的同时,使得钢的塑性提高到22.9%,强塑积提高到30.2 GPa·%。同时,Q-P工艺处理后的钢的冲击韧性明显改善,冲击功由空冷的78 J提高到99.5 J。力学性能改善的原因归根于Q-P处理的钢的组织主要是由马氏体和贝氏体组成的,同时有少量的残余奥氏体形成,通过控制残余奥氏体和马氏体的含量改善试样钢的力学性能。  相似文献   

11.
彭艳  刘才溢  王宁宁  孔玲 《钢铁》2021,56(1):85-90
 为提高钢的强塑性,基于传统淬火-碳分配-回火(quenching-partitioning-tempering,Q-P-T)工艺,结合热变形技术,提出变形-淬火-碳分配-回火(deforming-quenching-partitioning-tempering,D-Q-P-T)的设计思想,通过扫描电镜、透射电镜、X射线衍射和拉伸试验,研究变形作用对试验钢的微观组织结构和力学性能影响,讨论了变形-淬火-碳分配-回火工艺提高钢的强塑性机理,采用变形-淬火-碳分配-回火工艺最终获得了具有高位错密度的板条状马氏体和残余奥氏体组织,实现了钢的多相组织的设计思想,在870 ℃变形量为60%,变形速率为1 s-1条件下,D-Q-P-T工艺可使钢的抗拉强度比传统淬火-碳分配-回火工艺提高58 MPa,伸长率增大5%,对于实现汽车轻量化,拓宽高强钢的应用领域具有重要意义。  相似文献   

12.
通过设计对比实验,研究了临界淬火工艺对超厚水电站用钢板的组织和性能的影响.试验结果发现,临界淬火较低的加热温度得到了细小的奥氏体晶粒和一定量的未溶铁素体,临界淬火后试验钢近表面得到了未溶铁素体+板条马氏体组织,厚度t/4处得到了未溶铁素体+板条贝氏体+粒状贝氏体组织,厚度t/2处得到未溶铁素体+先共析铁素体+粒状贝氏体组织.回火后钢板近表面组织转变为未溶铁素体+回火索氏体组织,厚度t/4和t/2处回火后得到了铁素体+回火贝氏体组织.临界淬火工艺保留了部分未溶铁素体,使碳扩散至奥氏体中,提高了奥氏体的稳定性,淬火后以残余奥氏体存在,提高了超厚水电钢的冲击韧性;厚度t/2处的-20℃的低温冲击韧性达到了156 J,满足了使用要求.  相似文献   

13.
摘要:设计了马氏体起始相变温度(Ms)以上和以下2个不同温度等温淬火试验,结合热膨胀仪、扫描电镜显微组织、X光衍射和拉伸试验等试验手段,研究了对比于Ms以上温度等温淬火试验,Ms以下等温淬火对中碳贝氏体钢相变、组织和性能的影响。结果表明,贝氏体相变可以发生在Ms温度以下,且其相变动力学被明显促进。相比于Ms以上温度等温淬火,Ms温度以下等温淬火虽然可以加速相变动力学,但导致强度和伸长率下降,因此降低了最终的力学性能。这主要是因为Ms温度以下等温淬火试样组织内部出现了大量的回火无热马氏体(AM)和少量的贝氏体和残余奥氏体(RA)。因此,Ms温度以下等温淬火热处理后的组织性能未必优于Ms温度以上等温处理后组织性能,这主要取决于具体的成分和工艺。  相似文献   

14.
对成分为0.24%C-1.5%Si-2.0%Mn-0.16%V的冷轧试验钢,经780℃两相区退火后进行350~480℃不同温度下等温淬火和380℃等温60~1 200 s不同时间热处理对比试验,结合力学性能、显微组织、XRD分析,研究了热处理工艺对试验钢组织和性能的影响。结果表明,试验钢在780℃两相区退火180 s后,经380℃等温淬火处理360 s,可获得抗拉强度1 029 MPa、强塑积20.1 GPa·%、加工硬化指数0.22的良好综合性能。提高或降低等温温度均使其强度升高,延伸率降低;而延长等温时间至1 200 s,其强度及延伸率变化不大,但出现明显屈服平台。等温淬火温度及时间对残余奥氏体体积分数具有重要影响,在350~410℃范围内提高等温淬火温度,碳原子扩散能力提高,使残余奥氏体含量从2.58%增大到3.86%;而更高的等温淬火温度下,由于马氏体相变被抑制,发生贝氏体相变,残余奥氏体迅速下降;等温淬火时间超过180 s完成碳原子向奥氏体扩散富集,使其残余奥氏体稳定在3.5%左右。  相似文献   

15.
设计了含Ni和无Ni两种纳米结构贝氏体钢种,进行了不同温度下等温淬火热处理实验,目的是研究Ni对等温淬火纳米结构贝氏体钢相变、组织和性能的影响。结果表明,与连续冷却工艺不同,在等温淬火过程中,Ni元素的添加降低了贝氏体相变驱动力,减少贝氏体体积分数,同时使TTT曲线右移,减慢等温贝氏体相变动力学。此外,在等温淬火后,Ni元素的添加提高钢的冲击性能,但由于贝氏体量的减少和残余奥氏体的增多,使钢的拉伸性能降低。其次,随着相变温度的升高,含Ni钢和无Ni钢的强塑积略有增加。  相似文献   

16.
对控轧控冷工艺生产的16 mm厚度规格NM450耐磨钢板进行930℃+保温20 min淬火、200℃+保温25 min回火处理,并对热轧态、淬火态及回火态的钢板取样进行组织性能分析。结果表明,热轧后钢板组织为铁素体+珠光体以及少量贝氏体,淬火组织为马氏体+残余奥氏体以及少量贝氏体,回火组织为马氏体+残余奥氏体+针状贝氏体。试验钢淬火+回火处理后Rm1 378 MPa,A5021.5%,-20℃夏比冲击功61 J,表面布氏硬度443 HBW,具有良好的综合力学性能。  相似文献   

17.
叙述了高碳铬轴承钢中Mn、Si、Cr、Mo和Al含量及热处理工艺包括马氏体淬火-回火,贝氏体等温淬火、贝氏体-马氏体和马氏体-贝氏体淬火以及纳米贝氏体钢的研究进展。近10年发展的高强度、高塑性和高韧性的纳米贝氏体钢,因其由纳米尺寸的超细贝氏体铁素体板条和板条间富碳的残余奥氏体薄膜组成的特殊组织结构导致其在耐磨和接触疲劳性能方面也具有优越性,该纳米贝氏体轴承钢有良好的应用前景。  相似文献   

18.
王惕 《江苏冶金》2007,35(4):9-12
通过对批量性MC5中间辊硬度偏低、不均匀的情况进行试验、分析,发现淬火温度偏高导致残余奥氏体量增加,造成回火后硬度偏低;残余奥氏体在350℃左右回火时转变为下贝氏体类组织,使得残余奥氏体在回火后对硬度没有贡献.  相似文献   

19.
赵佳莉  张福成  于宝东  刘辉 《钢铁》2017,52(1):71-80
 对一种新型70Si3MnCrMo钢进行了等温和连续冷却贝氏体相变热处理。利用拉伸和冲击试验研究试验钢的力学行为,利用XRD、SEM和TEM等方法对试验钢进行了相组成分析和微观组织形貌观察。研究结果表明,试验钢经等温贝氏体相变,其最佳综合力学性能出现在200 ℃回火,强塑积为26.4 GPa·%。经连续冷却贝氏体相变,其最佳综合力学性能出现在300 ℃回火,强塑积达到28.6 GPa·%。回火温度较低的情况下,热处理后的组织为由贝氏体铁素体和残余奥氏体组成的无碳化物贝氏体组织,这种无碳化物贝氏体由超细贝氏体铁素体板条而获得超高强度,由一定量的高碳残余奥氏体来保证较高的塑性和韧性。试验钢经连续冷却贝氏体相变,其贝氏体铁素体板条中出现了超细亚单元,并且残余奥氏体呈薄膜状和小块状两种形态分布于贝氏体铁素体板条之间,这两种形态残余奥氏体的稳定性不同。拉伸试样在变形过程中残余奥氏体持续发生TRIP效应,直至全部残余奥氏体都发生转变生成应变诱发马氏体,从而使钢得到更好的强、塑性配合,表现出十分优异的综合性能。  相似文献   

20.
采用双相区保温—淬火—配分工艺对低碳硅锰钢进行热处理,通过扫描电镜、X射线衍射仪和拉伸试验等,研究了不同淬火温度对QP钢组织及力学性能的影响。结果表明:当淬火温度为220℃时,试验用钢综合力学性能最佳,抗拉强度达到1 400 MPa,延伸率为13.3%,强塑积达到18 620 MPa·%,随着淬火温度的升高,试验用钢的抗拉强度呈逐渐降低的趋势,塑性有所增大,室温组织中板条马氏体含量逐渐减少,碳化物颗粒逐渐增多,出现少量块状马氏体组织;双相区Mn元素向奥氏体的扩散补充了QP过程中碳配分的不足,最终室温残余奥氏体由两部分组成:一是少量富碳的残余奥氏体,另一部分则是经碳配分的富锰残余奥氏体,而淬火温度220℃的选取最为合理,为试验用钢提供了较好的塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号