共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国有色金属学会会刊》2015,(12)
湿法炼锌中性浸出渣(中浸渣)是含有Cd和Zn等重金属元素的一种危险中间物料,对环境造成严重危害。本研究所用锌中浸渣含有约35.99%Zn、15.93%Fe和0.26%Cd,而Cd主要以铁酸盐的形式存在。研究硫酸肼浓度、硫酸初始浓度、温度、时间以及液固比对酸性还原浸出锌中浸渣Cd、Zn和Fe浸出率的影响。结果表明,中浸渣在硫酸肼浓度为33.3 g/L、硫酸初始浓度为80 g/L、浸出温度为95°C、液固比为10 m L/g、搅拌速度为400 r/min条件下还原浸出120 min,Cd、Zn和Fe的浸出率分别达90.81%、95.83%和94.19%。X射线衍射及扫描电镜-能谱分析显示还原浸出渣的主要物相为硫酸铅(Pb SO4)以及硫酸锌肼复盐((N2H5)2Zn(SO4)2)。 相似文献
2.
《中国有色金属学报》2015,(9)
针对锌浸渣中锌难于选择性浸出回收的难题,提出硫酸铵焙烧-选择性浸出回收锌的新工艺。该工艺通过硫酸铵焙烧改变锌浸渣中锌铁物相,在浸出过程对锌进行选择性浸出回收。研究硫酸铵加入量、焙烧温度、焙烧时间等工艺参数对铁酸锌分解和锌铁浸出的影响,并获得最佳的工艺参数,即硫酸铵和铁酸锌质量比为4、一段焙烧温度和时间分别为450℃和90 min,二段焙烧温度和时间分别为650℃和60 min。在该条件下,锌浸出率可以达到92.63%,而铁的浸出率仅为2.04%,实现了锌浸渣中锌的选择性浸出。 相似文献
3.
《中国有色金属学报》2018,(10)
锌精矿与锌浸渣协同浸出过程中利用Fe~(3+)与锌精矿发生氧化还原反应,实现锌精矿与锌浸渣的同步溶解,且缓解溶液中高浓度Fe~(3+)对锌浸渣溶解的抑制作用。对渣矿协同浸出的矿物溶解行为进行研究,同时也以单一矿物锌精矿为研究对象,研究了其在H_2SO_4-Fe_2(SO_4)_3体系中的氧化转化行为。结果表明:渣矿协同浸出能有效提高有价金属的浸出率,且浸出液中Fe~(3+)含量较低,便于后续处理;根据XRD、SEM和XPS分析,锌精矿在氧化转化过程中不断溶解,锌精矿中的硫主要被氧化成单质硫进入渣中,且单质硫在矿物颗粒表面形成包裹,使其溶解不充分。 相似文献
4.
《中国有色金属学报》2019,(1)
锌冶炼浸出渣中锌主要以铁酸锌的形式存在,针对锌浸渣中铁酸锌难于分解的问题,以铁酸锌作为研究对象,研究二氧化硫作用下铁酸锌中锌的溶出和Fe(Ⅲ)的还原行为。考察初始硫酸浓度、液固比、二氧化硫通入量、反应时间、反应温度对二氧化硫还原分解铁酸锌行为的影响。结果表明:最佳反应条件如下,初始硫酸浓度120 g/L、液固比11:1、二氧化硫通入量0.41×10~(-2)mol/g、反应时间120 min、反应温度105℃。在最佳反应条件下,对锌浸渣开展还原浸出实验,锌的浸出率能达到99%以上,Fe(Ⅲ)的还原率能达到98%。通过ICP-MS和XRD分析表明,锌浸渣中的铁酸锌完全分解,还原浸出渣的主要成分为锌和铅,分别以ZnS和PbSO_4的形式存在。 相似文献
5.
6.
锌浸渣还原焙烧-磁选回收铁 总被引:2,自引:0,他引:2
在查明锌浸渣工艺矿物学的基础上,采用还原焙烧将铁酸锌分解为氧化锌和磁性氧化铁,再通过磁选的方法回收铁,达到锌、铁分离的目的。实验考查了焙烧温度、焙烧时间、还原剂用量对铁酸锌分解率、铁回收率和铁品位的影响。结果表明:在焙烧温度为950℃、焙烧时间为1 h及还原剂添加量为10%和5%的条件下,铁酸锌分解率达到72.05%,铁回收率可达到91.79%,精矿中铁的品位为50%左右。焙烧及磁选过程中颗粒的团聚包裹是铁精矿品位不高的主要原因。 相似文献
7.
《中国有色金属学会会刊》2016,(9)
铁酸锌是锌中性浸出渣中的主要物相,热酸浸出是处理中性浸出渣的主要方法之一。研究了一种采用硫化锌精矿作为还原剂对锌中性浸出渣进行还原浸出的方法。研究发现,采用硫化锌精矿作为还原剂不仅能高效浸出锌中性浸出渣中的有价金属,而且同时实现溶液中Fe~(3+)向Fe~(2+)的还原。采用两段逆流浸出工艺,98.1%锌和97.5%铟被浸出,浸出液中Fe~(2+)/Fe~(3+)的摩尔比达到9.6。同时发现,浸出过程中铁和铜几乎完全浸出,而锡只有部分浸出。 相似文献
8.
通过10 kg级小型不锈钢冶炼渣熔融还原试验,研究了不锈钢废渣在1 500~1 650℃温度范围内的熔融还原动力学行为,认为还原反应体现在两个阶段:反应初期不锈钢废渣熔解为反应的控速环节;而反应后期界面处的化学反应演变为反应的控速环节.从整体熔融还原试验上看,不同阶段对炉渣组成有着不同的要求:反应初期需要降低熔渣熔点,能有效促进形成液态渣,以提高不锈钢渣的熔解速度;反应后期需合理调节炉渣流动性以加速熔融还原反应.故可以通过炉渣参数优化以求在保证终渣的残铬达到较高回收的前提下尽可能提高熔融还原的速率. 相似文献
9.
对锌浸出渣熔池熔炼碳还原炼铁反应过程进行了热力学分析。结果表明:Zn Fe2O4和KFe3(SO4)2(OH)6受热分解的含铁产物是Fe2O3,Zn Fe2O4在300~1800 K温度范围内不能自发分解,KFe3(SO4)2(OH)6在652.25K即可分解;高pCO/pCO2、低温(但要高于炉渣熔融的温度)有利于熔体中的Fe2O3还原生成液态铁;含硫物相低温分解后的产物有金属硫酸盐K2SO4和Ca SO4,两者热分解脱硫的有利条件均是高温及低硫分压、低氧分压(但氧分压要高于硫酸盐分解生成硫化物的限值),Ca SO4热分解脱硫比K2SO4易于进行。锌浸出渣中碱性氧化物Ca O的存在,一方面可以降低Zn2Si O4碳热还原的起始反应温度,另一方面可以提高炉渣碱度及炉渣中Ca O的活度,降低硫在铁液与炉渣中的分配平衡常数。 相似文献
10.
对湿法炼锌净化渣的浸出动力学进行了研究,并探讨了硫酸浓度、反应温度、粒度等对钴、锌浸出率的影响规律。从动力学的角度分析了整个浸出过程,得到优化条件:液固比50:1(mL/g),硫酸浓度100 g/L,反应温度70°C,粒度75~80μm,反应时间20 min。在此优化条件下钴的浸出率为99.8%,锌的浸出率为91.97%。结果表明:在硫酸体系中钴的浸出符合不生成固体产物层的“未反应收缩核”模型。通过 Arrhenius 经验公式求得钴和锌表观反应活化能分别为11.693 kJ/mol和6.6894 kJ/mol,这表明浸出过程受边界层扩散控制。 相似文献
11.
传统湿法炼锌过程产生大量富含有价金属资源的铁酸锌废渣,铁的分离是实现铁酸锌废渣中有价金属资源回收的关键。提出含大量铁酸锌的锌浸出渣选择性还原焙烧?浸出分离铁和锌的新方法。通过热力学分析确定铁酸锌分解过程中Fe3O4和ZnO产物的优势区域,并发现V(CO)/V(CO+CO2)比是控制铁酸锌还原焙烧产物物相的关键因素,在V(CO)/V(CO+CO2)比在2.68%?36.18%范围内,铁酸锌优先分解生成在Fe3O4和ZnO。通过TG分析,确定铁酸锌还原焙烧的最佳条件为焙烧温度700?750°C,CO体积分数6%,V(CO)/V(CO+CO2)30%。基于上述研究结果,对富含铁酸锌的锌浸渣进行还原焙烧处理,焙烧产物经酸浸后,锌的浸出率达70%,铁的浸出率仅为18.4%,实现锌浸渣中锌和铁的有效分离。 相似文献
12.
13.
低品位氧化锌矿酸浸后,浸出渣中夹带3%以上的锌,采用水洗-P204萃取可回收酸浸渣中的水溶性锌,得到的反萃液经过净化后可电积沉锌。该工艺可与湿法炼锌工艺相结合处理低品位氧化锌矿。 相似文献
14.
研究利用隔膜压滤机从锌浸渣中浸出和回收锌的可行性。实验结果表明:选择粒度小于106μm的锌焙砂和宽度30 mm的压滤腔室时滤饼的均匀性及洗涤效果较佳。以废电解液洗涤锌浸渣的形式浸出锌,在90~96°C条件下洗涤90 min获得的锌浸出率为97%,且水洗后几乎所有浸出的锌被回收,避免了锌渣中锌的损失。与传统热酸浸出工艺相比,以隔膜压滤机为浸出反应器的浸出工艺不仅能保障浸出率又能缩短浸出时间。并且还可将浓缩、化浆、二段浸出和洗涤与过滤、压滤集成在一台隔膜压滤机上完成。 相似文献
15.
针对电解锰阳极渣难处理、铅含量高的缺点,提出利用桔子皮作还原剂在硫酸体系中还原浸出电解锰阳极渣工艺。以国内某电解锰厂阳极渣为原料,对桔子皮加入量、浸出时间、浸出温度以及硫酸加入量等工艺参数进行探讨和优化。结果表明:在浸出温度为80℃,时间为2 h,固液比为1:4,桔子皮/锰阳极渣质量比为1:5,酸渣质量比为1.2:1的条件下,锰的浸出率可达96%,铅的浸出率仅为0.2%,有效地实现了铅锰分离。实验证明,在硫酸体系中利用桔子皮作还原剂浸出电解锰阳极渣的方法可行。 相似文献
16.
17.
从锌浸出渣中回收银的方法 总被引:5,自引:0,他引:5
一般湿法炼锌厂所产出的锌浸出渣含有相当数量的银、锌及稀散金属。近20年来,人们从这类残渣中回收银及人价金属的研究和生产方法归纳起来可分为3类;浮选富集,火法富集和直接浸出银。讨论了各种方法的基本原理,优点和缺点,以及研究方向。 相似文献
18.
《中国有色金属学会会刊》2015,(8)
传统湿法炼锌过程产生大量富含有价金属资源的铁酸锌废渣,铁的分离是实现铁酸锌废渣中有价金属资源回收的关键。提出含大量铁酸锌的锌浸出渣选择性还原焙烧-浸出分离铁和锌的新方法。通过热力学分析确定铁酸锌分解过程中Fe3O4和ZnO产物的优势区域,并发现V(CO)/V(CO+CO2)比是控制铁酸锌还原焙烧产物物相的关键因素,在V(CO)/V(CO+CO2)比在2.68%-36.18%范围内,铁酸锌优先分解生成在Fe3O4和ZnO。通过TG分析,确定铁酸锌还原焙烧的最佳条件为焙烧温度700-750°C,CO体积分数6%,V(CO)/V(CO+CO2)30%。基于上述研究结果,对富含铁酸锌的锌浸渣进行还原焙烧处理,焙烧产物经酸浸后,锌的浸出率达70%,铁的浸出率仅为18.4%,实现锌浸渣中锌和铁的有效分离。 相似文献
19.
《中国有色金属学报》2017,(5)
以焦化废水为还原剂,在硫酸介质中利用收缩芯模型研究焦化废水加压直接还原浸出软锰矿的动力学,考察搅拌速度、反应温度、软锰矿粒径、硫酸浓度和焦化废水CODcr浓度对锰浸出速率的影响。结果表明:锰浸出率随反应温度、硫酸浓度、焦化废水CODcr浓度的增加和软锰矿粒径的减小而增大。在393 K~423 K间,焦化废水还原浸出软锰矿受固膜扩散控制,表观活化能为15.2 kJ/mol,硫酸和焦化废水CODcr浓度的表观响应级数分别为1.21和0.98。机理分析表明:软锰矿氧化焦化废水中大分子有机物分解成小分子而被还原溶出,或被小分子直接还原溶出;反应过程中,软锰矿表面残留的Fe、Si、Al形成孔洞薄壁而影响锰的溶出过程。 相似文献