首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive equalisation in digital communication systems is a process of compensating the disruptive effects caused mainly by intersymbol interference in a band-limited channel and plays a vital role for enabling higher data rate in modern digital communication system. Designing efficient equalisers having low structural complexity and faster learning algorithms is also an area of much research interest in the present scenario. This paper presents a novel technique of improving the performance of conventional multilayer perceptron (MLP)-based decision feedback equaliser (DFE) of reduced structural complexity by adapting the slope of the sigmoidal activation function using fuzzy logic control technique. The adaptation of the slope parameter increases the degrees of freedom in the weight space of the conventional feedforward neural network (CFNN) configuration. Application of this technique provides faster learning with less training samples and significant performance gain. This research work also proposes adaptive channel equalisation techniques on recurrent neural network framework. Exhaustive simulation studies carried out prove that by replacing the conventional sigmoid activation functions in each of the processing nodes of recurrent neural network with multilevel sigmoid activation functions, the bit error rate performance has significantly improved. Further slopes of different levels of the multilevel sigmoid have been adapted using fuzzy logic control concept. Simulation results considering standard channel models show faster learning with less number of training samples and performance level comparable to the their conventional counterparts. Also, there is scope for parallel implementation of slope adaptation technique in real-time implementation, which saves the computational time.  相似文献   

2.
A new system that employs artificial neural networks to identify perceptually masked transmission opportunities within an audio stream is presented. The neural network is trained to automatically extract the perceptual map of the human auditory system. The network is then used at the encoding end to identify opportunities for transmission of inaudible data into the voice stream. At the decoding end, the network is used to monitor the audio channel for presence of masked data. Increased data transmission rates, resistance to compression algorithms and increased processing gains are among the advantages of the proposed solution.  相似文献   

3.
This paper presents a computationally efficient nonlinear adaptive filter by a pipelined functional link artificial decision feedback recurrent neural network (PFLADFRNN) for the design of a nonlinear channel equalizer. It aims to reduce computational burden and improve nonlinear processing capabilities of the functional link artificial recurrent neural network (FLANN). The proposed equalizer consists of several simple small-scale functional link artificial decision feedback recurrent neural network (FLADFRNN) modules with less computational complexity. Since it is a module nesting architecture comprising a number of modules that are interconnected in a chained form, its performance can be further improved. Moreover, the equalizer with a decision feedback recurrent structure overcomes the unstableness thanks to its nature of infinite impulse response structure. Finally, the performance of the PFLADFRNN modules is evaluated by a modified real-time recurrent learning algorithm via extensive simulations for different linear and nonlinear channel models in digital communication systems. The comparisons of multilayer perceptron, FLANN and reduced decision feedback FLANN equalizers have clearly indicated the convergence rate, bit error rate, steady-state error and computational complexity, respectively, for nonlinear channel equalization.  相似文献   

4.
In practice, the back-propagation algorithm often runs very slowly, and the question naturally arises as to whether there are necessarily intrinsic computation and difficulties with training neural networks, or better training algorithms might exist. Two important issues will be investigated in this framework. One establishes a flexible structure, to construct very simple neural network for multi-input/output systems. The other issue is how to obtain the learning algorthm to achieve good performance in the training phase. In this paper, the feedforward neural network with flexible bipolar sigmoid functions (FBSFs) are investigated to learn the inverse model of the system. The FBSF has changeable shape by changing the values of its parameter according to the desired trajectory or the teaching signal. The proposed neural network is trained to learn the inverse dynamic model by using back-propagation learning algorithms. In these learning algorithms, not only the connection weights but also the sigmoid function parameters (SFPs) are adjustable. The feedback-error-learning is used as a learning method for the feedforward controller. In this case, the output of a feedback controller is fed to the neural network model. The suggested method is applied to a two-link robotic manipulator control system which is configured as a direct controller for the system to demonstrate the capability of our scheme. Also, the advantages of the proposed structure over other traditional neural network structures are discussed.  相似文献   

5.

The functional design of submerged breakwaters is still developing, particularly with respect to modelling of the nearshore wave field behind the structure. This paper describes a method for predicting the wave transmission coefficients behind submerged breakwaters using machine learning algorithms. An artificial neural network using the radial-basis function approach has been designed and trained using laboratory experimental data expressed in terms of non-dimensional parameters. A wave transmission coefficient calculator is presented, based on the proposed radial-basis function model. Predictions obtained by the radial-basis function model were verified by experimental measurements for a two dimensional breakwater. Comparisons reveal good agreement with the experimental results and encouraging performance from the proposed model. Applying the proposed neural network model for predictions, guidance is given to appropriately calculate wave transmission coefficient behind two dimensional submerged breakwaters. It is concluded that the proposed predictive model offers potential as a design tool to predict wave transmission coefficients behind submerged breakwaters. A step-by-step procedure for practical applications is outlined in a user-friendly form with the intention of providing a simplified tool for preliminary design purposes. Results demonstrate the model’s potential to be extended to three dimensional, rough, permeable structures.

  相似文献   

6.
This paper describes a new scheme of binary codification of artificial neural networks designed to generate automatically neural networks using any optimization method. Instead of using direct mapping of strings of bits in network connectivities, this particular codification abstracts binary encoding so that it does not reference the artificial indexing of network nodes; this codification employs shorter string length and avoids illegal points in the search space, but does not exclude any legal neural network. With these goals in mind, an Abelian semi-group structure with neutral element is obtained in the set of artificial neural networks with a particular internal operation called superimposition that allows building complex neural nets from minimum useful structures. This scheme preserves the significant feature that similar neural networks only differ in one bit, which is desirable when using search algorithms. Experimental results using this codification with genetic algorithms are reported and compared to other codification methods in terms of speed of convergence and the size of the networks obtained as a solution.  相似文献   

7.
We study the performance of network-wide broadcasting as a function of the information implicitly available at nodes from neighbourhood transmissions. We term this set of instantaneous information as network information. Our discussion is focused on stateless broadcasting algorithms in which nodes decide on their forwarding behaviour based on the available network information. While stateless broadcasting schemes in the existing literature use various design guidelines that take advantage of specific aspects of the information, we develop a unified analytical model by characterizing the information available during different stages of broadcasting. Thus, our results are applicable to all stateless algorithms. We analyze broadcasting performance in terms of the transmission probability and redundancy of transmissions. Subsequently, we use our results to obtain insights on the feasibility conditions governing algorithm design depending on the network density and costs. While the first part of the work considers ideal channel conditions modeled as a unit disk graph (UDG), we subsequently enhance the model using a quasi-unit disk graph model (QUDG) to understand the effect of dynamic channel conditions.  相似文献   

8.
A Quantiser Neural Network (QNN) is proposed for the segmentation of MR and CT images. Elements of a feature vector are formed by image intensities at one neighbourhood of the pixel of interest. QNN is a novel neural network structure, which is trained by genetic algorithms. Each node in the first layer of the QNN forms a hyperplane (HP) in the input space. There is a constraint on the HPs in a QNN. The HP is represented by only one parameter in d-dimensional input space. Genetic algorithms are used to find the optimum values of the parameters which represent these nodes. The novel neural network is comparatively examined with a multilayer perceptron and a Kohonen network for the segmentation of MR and CT head images. It is observed that the QNN gives the best classification performance with fewer nodes after a short training time.  相似文献   

9.
The success of an artificial neural network (ANN) strongly depends on the variety of the connection weights and the network structure. Among many methods used in the literature to accurately select the network weights or structure in isolate; a few researchers have attempted to select both the weights and structure of ANN automatically by using metaheuristic algorithms. This paper proposes modified bat algorithm with a new solution representation for both optimizing the weights and structure of ANNs. The algorithm, which is based on the echolocation behaviour of bats, combines the advantages of population-based and local search algorithms. In this work, ability of the basic bat algorithm and some modified versions which are based on the consideration of the personal best solution in the velocity adjustment, the mean of personal best and global best solutions through velocity adjustment and the employment of three chaotic maps are investigated. These modifications are aimed to improve the exploration and exploitation capability of bat algorithm. Different versions of the proposed bat algorithm are incorporated to handle the selection of the structure as well as weights and biases of the ANN during the training process. We then use the Taguchi method to tune the parameters of the algorithm that demonstrates the best ability compared to the other versions. Six classifications and two time series benchmark datasets are used to test the performance of the proposed approach in terms of classification and prediction accuracy. Statistical tests demonstrate that the proposed method generates some of the best results in comparison with the latest methods in the literature. Finally, our best method is applied to a real-world problem, namely to predict the future values of rainfall data and the results show satisfactory of the method.  相似文献   

10.
对金属表面细微损伤的检测,传统的目标识别算法泛化能力较弱,而使用深度卷积神经网络的通用检测算法容易丢失小目标特征,其使用的传统正方形结构卷积不适用于处理长条状等不规则损伤。针对以上问题,提出了一种基于注意力机制和可变形卷积的级联神经网络目标检测模型ADC-Mask R-CNN。在ResNet101主干网络中嵌入通道域注意力与空间域注意力,以增强对小损伤目标的检测效果;采用可变形卷积与可变形感兴趣区域池化技术,提升了对不规则损伤的检测效果;通过级联网络实现了检测结果的进一步优化。在金属表面损伤数据集上的对比实验结果表明,ADC-Mask R-CNN模型可以提高金属表面细微不规则损伤的检测性能。  相似文献   

11.
Polynomial artificial neural networks (PANN) have been shown to be powerful for forecasting nonlinear time series. The training time is small compared to the time used by other algorithms of artificial neural networks and the capacity to compute relations between the inputs and outputs represented by every term of the polynomial. In this paper a new structure of polynomial is presented that improves the performance of this type of network considering only non-integers exponents. The architecture adaptation uses genetic algorithm (GA) to find the optimal architecture for every example. Some examples of sunspots and chaotic time series are presented.  相似文献   

12.
This paper proposes an adaptive recurrent neural network control (ARNNC) system with structure adaptation algorithm for the uncertain nonlinear systems. The developed ARNNC system is composed of a neural controller and a robust controller. The neural controller which uses a self-structuring recurrent neural network (SRNN) is the principal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. The SRNN approximator is used to online estimate an ideal tracking controller with the online structuring and parameter learning algorithms. The structure learning possesses the ability of both adding and pruning hidden neurons, and the parameter learning adjusts the interconnection weights of neural network to achieve favorable approximation performance. And, by the L 2 control design technique, the worst effect of approximation error on the tracking error can be attenuated to be less or equal to a specified level. Finally, the proposed ARNNC system with structure adaptation algorithm is applied to control two nonlinear dynamic systems. Simulation results prove that the proposed ARNNC system with structure adaptation algorithm can achieve favorable tracking performance even unknown the control system dynamics function.  相似文献   

13.
Supplying industrial firms with an accurate method of forecasting the production value of the mechanical industry to facilitate decision makers in precise planning is highly desirable. Numerous methods, including the autoregressive integrated-moving average (ARIMA) model and artificial neural networks can make accurate forecasts based on historical data. The seasonal ARIMA (SARIMA) model and artificial neural networks can also handle data involving trends and seasonality. Although neural networks can make predictions, deciding the most appropriate input data, network structure and learning parameters are difficult. Therefore, this article presents a hybrid forecasting method that combines the SARIMA model and neural networks with genetic algorithms. Analytical results generated by the SARIMA model are inputted as the input data of a neural network. Subsequently, the number of neurons in the hidden layer and the number of learning parameters of the neural network architecture are globally optimized using genetic algorithms. This model is subsequently adopted to forecast seasonal time series data of the production value of the mechanical industry in Taiwan. The results presented here provide a valuable reference for decision makers in industry.  相似文献   

14.
In the present world of ‘Big Data,’ the communication channels are always remaining busy and overloaded to transfer quintillion bytes of information. To design an effective equalizer to prevent the inter-symbol interference in such scenario is a challenging task. In this paper, we develop equalizers based on a nonlinear neural structure (wavelet neural network (WNN)) and train it's weighted by a recently developed meta-heuristic (symbiotic organisms search algorithm). The performance of the proposed equalizer is compared with WNN trained by cat swarm optimization (CSO) and clonal selection algorithm (CLONAL), particle swarm optimization (PSO) and least mean square algorithm (LMS). The performance is also compared with other equalizers with structure based on functional link artificial neural network (trigonometric FLANN), radial basis function network (RBF) and finite impulse response filter (FIR). The superior performance is demonstrated on equalization of two non-linear three taps channels and a linear twenty-three taps telephonic channel. It is observed that the performance of the gradient algorithm based equalizers fails in the presence of burst error. The robustness in the performance of the proposed equalizers to handle the burst error conditions is also demonstrated.  相似文献   

15.
Model structure selection is of crucial importance in radial basis function (RBF) neural networks. Existing model structure selection algorithms are essentially forward selection or backward elimination methods that may lead to sub-optimal models. This paper proposes an alternative selection procedure based on the kernelized least angle regression (LARS)–least absolute shrinkage and selection operator (LASSO) method. By formulating the RBF neural network as a linear-in-the-parameters model, we derive a l 1-constrained objective function for training the network. The proposed algorithm makes it possible to dynamically drop a previously selected regressor term that is insignificant. Furthermore, inspired by the idea of LARS, the computing of output weights in our algorithm is greatly simplified. Since our proposed algorithm can simultaneously conduct model structure selection and parameter optimization, a network with better generalization performance is built. Computational experiments with artificial and real world data confirm the efficacy of the proposed algorithm.  相似文献   

16.
Playout delay adaptation algorithms are often used in real time voice communication over packet-switched networks to counteract the effects of network jitter at the receiver. Whilst the conventional algorithms developed for silence-suppressed speech transmission focused on preserving the relative temporal structure of speech frames/packets within a talkspurt (intertalkspurt adaptation), more recently developed algorithms strive to achieve better quality by allowing for playout delay adaptation within a talkspurt (intratalkspurt adaptation). The adaptation algorithms, both intertalkspurt and intratalkspurt based, rely on short term estimations of the characteristics of network delay that would be experienced by up-coming voice packets. The use of novel neural networks and fuzzy systems as estimators of network delay characteristics are presented in this paper. Their performance is analyzed in comparison with a number of traditional techniques for both inter and intratalkspurt adaptation paradigms. The design of a novel fuzzy trend analyzer system (FTAS) for network delay trend analysis and its usage in intratalkspurt playout delay adaptation are presented in greater detail. The performance of the proposed mechanism is analyzed based on measured Internet delays.  相似文献   

17.
Principal feature classification   总被引:3,自引:0,他引:3  
The concept, structures, and algorithms of principal feature classification (PFC) are presented in this paper. PFC is intended to solve complex classification problems with large data sets. A PFC network is designed by sequentially finding principal features and removing training data which has already been correctly classified. PFC combines advantages of statistical pattern recognition, decision trees, and artificial neural networks (ANNs) and provides fast learning with good performance and a simple network structure. For the real-world applications of this paper, PFC provides better performance than conventional statistical pattern recognition, avoids the long training times of backpropagation and other gradient-descent algorithms for ANNs, and provides a low-complexity structure for realization.  相似文献   

18.
针对常规PID控制器有着对过程的数学模型过于依赖的局限性,导致许多过程控制效果不理想的问题,根据人工神经元的自学习功能构造了基于神经元的PID控制器,对其学习算法加以改进。选取二阶惯性环节加纯滞后为控制对象,建立了数学模型,并进行计算机仿真及对这几种控制方法的控制效果加以比较。仿真结果表明,该控制器将神经网络和PID控制规律融为一体,既具有常规肿控制器结构简单、参数物理意义明确的优点,又具有神经网络自学习、自适应的能力,取得比常规PID控制器更好的控制品质。  相似文献   

19.
由于人工神经网络在符号处理、并行搜索、自组织联想记忆等方面有独特的优势,因此成为人工智能研究的热点。目前,人工神经网络模型形式多样,为了能够清晰地了解人工神经网络,就两种比较流行的神经网络:BP与RBF进行了介绍,研究了这两种人工神经网络的结构算法,并且对它们的结构算法以及性能进行了比较。  相似文献   

20.
In this work we investigate how artificial neural network (ANN) evolution with genetic algorithm (GA) improves the reliability and predictability of artificial neural network. This strategy is applied to predict permeability of Mansuri Bangestan reservoir located in Ahwaz, Iran utilizing available geophysical well log data. Our methodology utilizes a hybrid genetic algorithm–neural network strategy (GA–ANN). The proposed algorithm combines the local searching ability of the gradient–based back-propagation (BP) strategy with the global searching ability of genetic algorithms. Genetic algorithms are used to decide the initial weights of the gradient decent methods so that all the initial weights can be searched intelligently. The genetic operators and parameters are carefully designed and set avoiding premature convergence and permutation problems. For an evaluation purpose, the performance and generalization capabilities of GA–ANN are compared with those of models developed with the common technique of BP. The results demonstrate that carefully designed genetic algorithm-based neural network outperforms the gradient descent-based neural network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号