首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH3OH solution is about 11.48 mW cm−2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.  相似文献   

2.
The high performance poly(vinyl alcohol)/titanium oxide nanotubes/poly(styrene sulfonic acid) (PVA/nt-TiO2/PSSA) proton-conducting composite membrane is prepared by a solution casting method. The characteristic properties of these blend composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), micro-Raman spectroscopy, dynamic mechanical analysis (DMA), methanol permeability measurement and AC impedance method. It is found that the peak power densities of the DMFC with 1, 2, and 4 M CH3OH fuels are 12.85, 23.72, and 10.99 mW cm−2, respectively, at room temperature and ambient air. Especially, among three methanol concentrations, the 2 M methanol shows the highest peak power density among three methanol concentrations. The results indicate that the air-breathing direct methanol fuel cell comprised of a novel PVA/nt-TiO2/PSSA composite polymer membrane has excellent electrochemical performance and stands out as a viable candidate for applications in DMFC.  相似文献   

3.
Al2O3 was synthesized using the sol-gel process with aluminum isopropoxide as the precursor and primary distilled water as the solvent. Nickel and cobalt metal powders were used to increase the strength of the membranes. The Al2O3-based membranes were prepared using HPS following a mechanical alloying process. The phase transformation, thermal evolution, surface and cross-section morphology of Al2O3 and Al2O3-based membranes were characterized by XRD, TG-DTA and FE-SEM. The hydrogen permeation of Al2O3-based membranes was examined at 300–473 K under increasing pressure. Hydrogen permeation flux through an Al2O3-20wt%Co membrane was obtained to 2.36 mol m−2 s−1. Reaction enthalpy was calculated to 4.5 kJ/mol using a Van’t Hoff’s plot.  相似文献   

4.
The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH3OH, 2 M C2H5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm−2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO2 composite polymer membrane with the permeability values in the order of 10−7 to 10−8 cm2 s−1 is a potential candidate for use on alkaline DAFCs.  相似文献   

5.
By combining organic polymers normally used to make membrane filters with inorganic substances, multi-walled carbon nanotube (MWCNTs), an extraordinary ability to separate H2 from CH4 was developed in this study. A series of MWCNTs/PBNPI nanocomposite membrane with a nominal MWCNTs content between 1 and 15 wt% were prepared by solution casting method, in which the very fine MWCNTs were embedded into glassy polymer membrane. Detailed characterizations, such as morphology, thermal stability and crystalline structure have been conducted to understand the structures, composition and properties of nanocomposite membranes. The results found that this new class of membrane had increased permeability and enhanced selectivity, and a useful ability to filter gases and organic vapours at the molecular level.  相似文献   

6.
Poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS)/3-glycidyloxypropyl)trimethoxysilane (PVA/PAMPS/GPTMS) organic/inorganic proton-conducting polymer membranes are prepared by a solution casting method. PAMPS is a polymeric acid commonly used as a primary proton donor, while 3-(glycidyloxypropyl)trimethoxysilane (GPTMS) is an inorganic precursor forming a semi-interpenetrating network (SIPN). Varying amounts of sulfosuccinic acid (SSA) are used as the cross-linker and secondary proton source. The characteristic properties of PVA/PAMPS/GPTMS composite membranes are investigated by thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), micro-Raman spectroscopy and the AC impedance method. Direct methanol fuel cells (DMFCs) made of PVA/PAMPS/GPTMS composite membranes are assembled and examined. Experimental results indicate that DMFCs employing an inexpensive, non-perfluorinated, organic/inorganic SIPN membrane achieve good electrochemical performance. The highest peak power density of a DMFC using PVA/PAMPS/GPTMS composite membrane with 2 M CH3OH solution fuel at ambient temperature is 23.63 mW cm−2. The proposed organic/inorganic proton-conducting membrane based on PVA/PAMPS/GPTMS appears to be a viable candidate for future DMFC applications.  相似文献   

7.
Sulfonated-silica/Nafion® composite membranes were prepared in a sol–gel reaction of (3-Mercaptopropyl)trimethoxysilane (SH-silane) followed by solution casting, and then oxidated using 10 wt% H2O2 solution. The chemical and physical properties of the composite membranes were characterized by using FT-IR, XPS, 29Si NMR and SEM analyses. Experimental results indicated that the optimum oxidation condition was 60 °C for 1 h. The performance of the silica–SO3H/Nafion® composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The silica–SO3H/Nafion® composite membranes have a higher selectivity (C/P ratio = 26,653) than that of pristine Nafion® (22,795), perhaps because of their higher proton conductivity and lower methanol permeability. The composite membrane with 0.6 wt% silica–SO3H/Nafion® performed better than pristine Nafion®. The current densities were measured as 62.5 and 70 mA cm−2 at a potential of 0.2 V with a composite membrane that contained 0 and 0.6 wt% silica–SO3H, respectively. The cell performance of the DMFC was improved by introducing silica–SO3H. The composite membrane with 0.6 wt% of silica–SO3H yielded the maximum power density of 15.18 mW cm−2. The composite membranes are suitable for DMFC applications with high selectivity.  相似文献   

8.
A novel composite polymer electrolyte membrane composed of a PVA polymer host and montmorillonite (MMT) ceramic fillers (2–20 wt.%), was prepared by a solution casting method. The characteristic properties of the PVA/MMT composite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and micro-Raman spectroscopy, and the AC impedance method. The PVA/MMT composite polymer membrane showed good thermal and mechanical properties and high ionic conductivity. The highest ionic conductivity of the PVA/10 wt.%MMT composite polymer membrane was 0.0368 S cm−1 at 30 °C. The methanol permeability (P) values were 3–4 × 10−6 cm2 s−1, which was lower than that of Nafion 117 membrane of 5.8 × 10−6 cm2 s−1. It was revealed that the addition of MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT composite membranes; which can be accomplished by a simple blend method. The maximum peak power density of the DMFC with the PtRu anode based on Ti-mesh in a 2 M H2SO4 + 2 M CH3OH solution was 6.77 mW cm−2 at ambient pressure and temperature. As a result, the PVA/MMT composite polymer appears to be a good candidate for the DMFC applications.  相似文献   

9.
A novel multilayer mixed matrix membrane (MMM), consisting of poly(phenylene oxide) (PPO), large-pore mesoporous silica molecular sieve zeolite SBA-15, and a carbon molecular sieve (CMS)/Al2O3 substrate, was successfully fabricated using the procedure outlined in this paper. The membranes were cast by spin coating and exposed to different gases for the purpose of determining and comparing the permeability and selectivity of PPO/SBA-15 membranes to H2, CO2, N2, and CH4. PPO/SBA-15/CMS/Al2O3 MMMs with different loading weights of zeolite SBA-15 were also studied. This new class of PPO/SBA-15/CMS/Al2O3 multilayer MMMs showed higher levels of gas permeability compared to PPO/SBA-15 membranes. The permselectivity of H2/N2 and H2/CH4 combinations increased remarkably, with values at 38.9 and 50.9, respectively, at 10 wt% zeolite loading. Field emission scanning electron microscopy results showed that the interface between the polymer and the zeolite in MMMs was better at a 10 wt% loading than other loading levels. The increments of the glass transition temperature of MMMs with zeolite confirm that zeolite causes polymer chains to become rigid.  相似文献   

10.
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame.  相似文献   

11.
New experimental results were obtained for the mutual sensitization of the oxidation of NO and methane in a fused silica jet-stirred reactor operating at 1-10 atm, over the temperature range 800-1150 K. Probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses allowed the measurement of concentration profiles for the reactants, stable intermediates, and final products. Detailed chemical kinetic modeling of the experiments was performed. An overall reasonable agreement between the present data and modeling was obtained, whereas previously published models failed to properly represent these new data. According to the proposed model, the mutual sensitization of the oxidation of methane and NO proceeds through the NO to NO2 conversion by HO2 and CH3O2. The modeling showed that at 1-10 atm, the conversion of NO to NO2 by CH3O2, is more important at low temperatures (800 K) than at higher temperatures (850-900 K), where the reaction of NO with HO2 dominates the production of NO2. The NO to NO2 conversion is enhanced by the production of HO2 and CH3O2 radicals from the oxidation of the fuel. The production of OH resulting from the oxidation of NO promotes the oxidation of the fuel: NO + HO2 ? OH + NO2 is followed by OH + CH4 ? CH3. At low temperature, the reaction further proceeds via CH3 + O2 ? CH3O2, CH3O2 + NO ? CH3O + NO2. At higher temperatures, the production of CH3O involves NO2: CH3 + NO2 ? CH3O. The sequence is followed by CH3O ? CH2O + H, CH2O + OH ? HCO, HCO + O2 ? HO2, and H + O2 ? HO2. ? CH2O + H, CH2O + OH ? HCO, HCO + O2 ? HO2, and H + O2 ? HO2.  相似文献   

12.
A high performance poly(vinyl alcohol)/montmorillonite/poly(styrene sulfonic acid) (PVA/MMT/PSSA) proton-conducting composite membrane was fabricated by a solution casting method. The characteristic properties of these blend composite membranes were investigated by using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, methanol permeability measurement, and the AC impedance method. The ionic conductivities for the composite membranes are in the order of 10−3 S cm−1 at ambient temperature. There are two proton sources used on this novel composite membrane: the modified MMT fillers and PSSA polymer, both materials all contain the -SO3H group. Therefore, the ionic conductivity was greatly enhanced. The methanol permeabilities of PVA/MMT/PSSA composite membranes is of the order of 10−7 cm2 s−1. It is due to the excellent methanol barrier properties of the PVA polymer. The peak power densities of the air-breathing direct methanol fuel cells (DMFCs) with 1M, 2M, 4M CH3OH fuels were 14.22, 20.00, and 13.09 mW cm−2, respectively, at ambient conditions. The direct methanol fuel cell with this composite polymer membrane exhibited good electrochemical performance. The proposed PVA/MMT/PSSA composite membrane is therefore a potential candidate for future applications in DMFC.  相似文献   

13.
A novel composite membrane consisting of a poly(phenylene oxide) (PPO) selective layer and a CMS/Al2O3 substrate was fabricated by a spin-coating method. This new class of PPO/CMS/Al2O3 multilayer composite membranes showed an H2 permeability of 134 Barrer, two times greater than that for the corresponding self-supported PPO polymeric membrane. High selectivities for H2/CH4 and H2/N2 of 31.8 and 37.1, respectively, were also obtained with this composite membrane. According to field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations, using the CMS/Al2O3 material as the substrate provided a smooth surface for the support of the PPO selective layer and increased the roughness from the top to bottom surfaces. The effects of the substrate materials on the permselectivity of the resulting membrane were also investigated.  相似文献   

14.
Lithium sulfur cells were prepared by composing with sulfur cathode (PEO)6LiBF4 polymer electrolyte and lithium anode. (PEO)6LiBF4 polymer electrolyte was prepared under three different mixing conditions: stirred polymer electrolyte (SPE), ball-milled polymer electrolyte (BPE) and ball-milled polymer electrolyte with 10 wt%Al2O3 (BCPE). The effects of ball milling and additive were investigated by discharge test according to depth of discharge. The initial discharge capacity of lithium sulfur cell using BCPE was 1670 mAh g−1-sulfur, which was better than those of SPE and BPE, and approximately equal to the theoretical capacity. The cycle performance of Li/(PEO)6LiBF4/S cell was remarkably improved by the addition of Al2O3.  相似文献   

15.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

16.
Interactions of refractory materials with molten gasifier slags   总被引:1,自引:0,他引:1  
The current study focuses on the analysis of sessile-drop interfacial reactions between two synthetic slags (based on average ash chemistries of coal and petcoke feedstock) and two refractory materials (90 wt% Cr2O3-10 wt% Al2O3 and 100 wt% Al2O3), using a Confocal Scanning Laser Microscope (CSLM). Ground slag samples (less than 325 mesh) were placed at specific microstructure locations on refractory substrates and heated to 1500 °C in an atmosphere of CO/CO2 gas mixture (volume ratio = 1.8), using a gold-image heating chamber. Cross-sections of the slag/refractory interface indicated unique slag penetration into preferred areas of the refractory and grain dissolution into the slag which promoted spalling of the refractory. Initially, the slag attacked both grain boundaries and fine microstructure areas, freeing alumina grains into the slag. The formation of VOx-based crystalline material in the petcoke slag was found to alter the liquid composition. Chemical spalling of Cr-containing crystal layer also facilitated degradation of the refractory.  相似文献   

17.
Single-phase lithium nickel manganese oxide, LiNi0.5Mn0.5O2, was successfully synthesized from a solid solution of Ni1.5Mn1.5O4 that was prepared by means of the solid reaction between Mn(CH3COO)2·4H2O and Ni(CH3COO)2·4H2O. XRD pattern shows that the product is well crystallized with a high degree of Li–M (Ni, Mn) order in their respective layers, and no diffraction peak of Li2MnO3 can be detected. Electrochemical performance of as-prepared LiNi0.5Mn0.5O2 was examined in the test battery by charge–discharge cycling with different rate, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The cycling behavior between 2.5 and 4.4 V at a current rate of 21.7 mA g−1 shows a reversible capacity of about 190 mAh g−1 with little capacity loss after 100 cycles. High-rate capability test shows that even at a rate of 6C, stable capacity about 120 mAh g−1 is retained. Cyclic voltammetry (CV) profile shows that the cathode material has better electrochemical reversibility. EIS analysis indicates that the resistance of charge transfer (Rct) is small in fully charged state at 4.4 V and fully discharged state at 2.5 V versus Li+/Li. The favorable electrochemical performance was primarily attributed to regular and stable crystal structure with little intra-layer disordering.  相似文献   

18.
Ethylamine (CH3CH2NH2) pyrolysis and oxidation were studied using laser absorption behind reflected shock waves. For ethylamine pyrolysis, NH2 time-histories were measured in 2000 ppm ethylamine/argon mixtures. For ethylamine oxidation, ignition delay times, and NH2 and OH time-histories were measured in ethylamine/O2/argon mixtures. Measurements covered the temperature range of 1200–1448 K, with pressures near 0.85, 1.35 and 2 atm, and fuel mixtures with equivalence ratios of 0.75, 1 and 1.25 in 0.2%, 0.8% and 4% O2/argon. Simulations using the recent Li et al. mechanism gave significantly shorter ignition delay times and higher intermediate radical species concentrations than the experimental results. The reaction rate constants for the two major ethylamine decomposition pathways were modified in the Li et al. mechanism to improve the prediction of the time-histories of NH2 and OH in ethylamine pyrolysis. In addition, recommendations from recent studies of ethylamine + OH reactions were implemented. With these modifications, the Modified Li et al. mechanism provides significantly improved agreement with the species time-history measurements and the ignition delay time data.  相似文献   

19.
A three-point bending (rectangular bar) specimen was made from sintered Al2O3/SiC composite ceramics and commercial Al2O3 material, upon which a semi-elliptical surface crack of 100 μm in diameter (aspect ratio ≒ 0.9) was introduced through an indentation method. The following materials were subjected to the following crack-healing treatment: Al2O3/SiC composite ceramics (under 1573 K temperature, 1 h crack-healing time) and monolithic Al2O3 (under 1373 K or 1723 K temperature, 1 h crack-healing time) designed to heal the crack samples.  相似文献   

20.
LiCoO2 particles were coated with various wt.% of lanthanum aluminum garnets (3LaAlO3:Al2O3) by an in situ sol–gel process, followed by calcination at 1123 K for 12 h in air. X-ray diffraction (XRD) patterns confirmed the formation of a 3LaAlO3:Al2O3 compound and the in situ sol–gel process synthesized 3LaAlO3:Al2O3-coated LiCoO2 was a single-phase hexagonal α-NaFeO2-type structure of the core material without any modification. Scanning electron microscope (SEM) images revealed a modification of the surface of the cathode particles. Transmission electron microscope (TEM) images exposed that the surface of the core material was coated with a uniform compact layer of 3LaAlO3:Al2O3, which had an average thickness of 40 nm. Galvanostatic cycling studies demonstrated that the 1.0 wt.% 3LaAlO3:Al2O3-coated LiCoO2 cathode showed excellent cycle stability of 182 cycles, which was much higher than the 38 cycles sustained by the pristine LiCoO2 cathode material when it was charged at 4.4 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号