首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
为研究La2Ce2O7∶Ho3+ / Yb3+陶瓷的荧光温度传感性能,采用高温固相反应法制备该材料,在 La2Ce2O7晶格中,使Ho3+和Yb3+都取代La3+的位置,其中,Ho3+离子浓度为0. 05% at. %,Yb3+离子浓度在10% ~ 18% at. %范围内。在980 nm波长的激光激发下,检测到上转换(Up?conversion, UC)绿光的强度在550 nm处达 到峰值,红光强度在666 nm处达到峰值。当Ho3+和Yb3+的掺杂浓度分别为0. 05% at. %和14% at. %时,UC发射 强度最强。研究了La2Ce2O7∶Ho3+ / Yb3+陶瓷在303 ~ 483 K温度范围内的温度传感性能,在303 K温度条件下得 到最高绝对灵敏度(Sa)为0. 002 8 K-1,在303 K 温度条件下得到最高相对灵敏度(Sr)为0. 005 4 K-1,表明 La2Ce2O7∶Ho3+ / Yb3+陶瓷可以作为潜在的远程温度传感器候选材料。  相似文献   

2.
目前白光LED在红光波段发射较弱,导致其显色指数偏低,在白光LED用Ce∶YAG微晶玻璃中掺入Cr3+来增强红光波段的发射,从而提高显色指数。通过X射线衍射、荧光光度计、电光源参数测试对样品的晶相、光谱性能及荧光寿命进行了表征。研究了Cr3+对Ce∶YAG微晶玻璃发光性能的影响,并对其增红机理进行了初步的探讨。结果表明基质玻璃在1400℃热处理可析出纯的YAG晶相;Ce∶YAG和Ce、Cr∶YAG微晶玻璃在460nm激发下,在480~650nm产生有效发射,发射光谱中心波长位于530nm;由于Ce3+(2E)-Cr3+(4T)之间的非辐射能量传递,Ce、Cr∶YAG微晶玻璃在688、692和705nm处有红色发射峰,能有效地提高白光LED的显色性能。  相似文献   

3.
Ce:YAG透明陶瓷可与蓝光LEDs/LDs复合, 用于大功率白光LEDs/LDs。本研究通过调整Ce:YAG透明陶瓷的厚度和Ce3+的掺杂浓度, 将组装器件的发射光谱和色坐标从冷白区调整到暖白区。以高纯(≥99.99%)商业粉体α-Al2O3、Y2O3、CeO2为原料, 采用固相反应法制备了(CexY1-x)3Al5O12 (x=0.0005、0.0010、0.0030、0.0050、0.0070和0.0100)透明陶瓷。陶瓷素坯在1750 ℃真空烧结20 h(真空度5.0×10-5 Pa), 之后在马弗炉中退火1450 ℃×10 h。不同掺杂浓度Ce:YAG陶瓷(厚度分别为0.2、0.4、1.0 mm)在800 nm处的直线透过率均大于79%。Ce:YAG荧光陶瓷的热导率随着测试温度和掺杂浓度的增加而降低。采用有限元方法模拟不同厚度的Ce:YAG陶瓷和LED组装的热分布, 比较了三种封装方式的热分布。将Ce:YAG荧光陶瓷与LEDs/LDs复合, 制备出色坐标分别为(0.3319, 0.3827)和(0.3298, 0.3272)的白光, 发光效率分别为122.4和201.5 lm/W。将Ce:YAG荧光陶瓷和10、50 W商用蓝光LED芯片组合成熟灯具, 可用于商业用途。Ce:YAG透明陶瓷在大功率照明和显示的彩色转换材料应用领域极具潜力。  相似文献   

4.
激光透明陶瓷的研究进展   总被引:2,自引:1,他引:1  
综述了Nd:YAG和高熔点稀土倍半氧化物激光透明陶瓷的研究进展.激光透明陶瓷作为激光增益介质,已显示出潜在的性能优势,Nd∶YAG透明陶瓷激光器的输出功率已超过1kW,Yb2+∶Y2O3稀土倍半氧化物陶瓷激光器的输出功率也达到10W.介绍了激光陶瓷制备工艺和激活离子的能级结构,比较了普通陶瓷和激光陶瓷的显微组织,指出完美的显微组织是获得激光输出的关键,最后展望了该领域的发展前景和研究趋势.  相似文献   

5.
采用草酸铵共沉淀法实现在Gd2O3中掺杂Pr和Ce,以此为原料,硫粉为硫化剂,无水Na2CO3为助熔剂,1000℃真空固相合成了Gd2O2S:Pr和Gd2O2S:Pr,Ce粉末。采用XRD确认了反应产物为目标产物,制备的Gd2O2S:Pr为六方晶系单一相,粉末粒度分布1~10μm,在313 nm的紫外光激发下,主发射峰位于511 nm,属于Pr3+的3P0→3H4跃迁。主发射光强度随Pr3+的含量变化而改变,当Pr3+的含量在0.80%时主发射光强度最大。添加Ce3+可以明显降低Gd2O2S:Pr的荧光余辉,但同时也降低了发射光强度,Ce3+的添加量要在余辉控制,荧光光强和闪烁体使用寿命三者间平衡选择。  相似文献   

6.
新型黄绿色发光材料Sr2MgSi3O9:Ce3+,Tb3+的合成及光谱分析   总被引:1,自引:0,他引:1  
采用凝胶-燃烧法在活性炭弱还原气氛下成功合成了新型荧光粉Sr2MgSi3O9 :Tb3+、Sr2MgSi3O9:Ce3+,Tb3+,用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物进行了分析和表征.结果表明,所合成的发光材料与Sr2MgSi2O7具有相似的晶体结构,同属四方晶系.样品一次颗粒近似球形,粒径在100nm左右.Sr2MgSi3O9:Tb3+的激发光谱为一位于249nm的宽带,发射光谱主要由473、491、547、585nm等一系列发射峰组成,其中473nm(5D3→<7F3)为主发射峰,547nm(5D4→7F5)为次发射峰;样品Sr1.955MgSi3O9:Tb3+0.04,Ce3+0.005的激发光谱由峰值分别位于249和335nm的双激发带组成,其中后者为主激发带.在335nm激发下,其发射光谱由两部分组成,其中400nm附近的带状发射对应于Ce3+的发射,而491、547、588nm处的发射峰归属为Tb3+的5+D4→7FJ(J=6,5,4)跃迁发射,最强峰位于547nm,对应Tb3+的5D4→7F5跃迁.此外,探讨了Ce3+掺杂量对样品发光亮度的影响,发现Ce3+可以把能量传递给Tb3+,对Tb3+起到敏化作用.  相似文献   

7.
采用固相反应和真空烧结技术制备了掺杂浓度为1.0at%的Nd:YAG透明陶瓷样品,并测试了样品的吸收光谱和荧光光谱.样品在主吸收峰808nm处的吸收截面为3.10×10-20cm2,主荧光发射峰位于1064nm处,实测荧光寿命为257μS.应用Judd-Ofelt理论计算了Nd3 在YAG中的强度参数Ωλ(λ=2,4,6),跃迁的振子强度、自发辐射跃迁几率、辐射寿命、荧光分支比等光谱参数.最后计算得到Nd:YAG透明陶瓷中Nd3 :4F3/2→I11/2跃迁对应的受激发射截面大小为3.81×10-19cm2.结果表明: Nd:YAG透明陶瓷具有较大的受激发射截面和高的荧光量子效率(接近100%),是一种性能优良的激光材料.  相似文献   

8.
在还原气氛下采用高温固相法合成了钇铝石榴石结构的荧光粉Lu2CaMg2Si3O12∶R(Ce3+,Gd3+),其中Gd3+的浓度变化为1~5 mol%。利用X射线衍射仪对其物相进行分析,结果显示:Ce3+的掺入使晶相结构不稳定,出现了少量杂相,而掺入少量Gd3+时,晶相结构不再变化。利用荧光光谱仪对其光学性能进行研究,结果发现随着Ce的浓度增大,发光强度先增大后减小且同时伴随着少许的发光红移,在2 mol%出现浓度淬灭;Gd的掺入对红移的贡献比较明显,最大波长从561 nm(1%Gd)→568 nm(5%Gd),同时也发现发光强度有明显的下降。这种荧光粉的激发波长在465 nm左右,与蓝光LED芯片的发射中心相吻合,而且发射峰明显比YAG要长,所以这种荧光粉能很好的补充YAG的显色性。  相似文献   

9.
Yb:YAG透明陶瓷由于具有宽的吸收带和发射带、高增益、低的热负载、长的荧光寿命、高的量子效率等优点而成为有应用前景的高功率固体激光器用增益介质。本研究优化了粉体的性能并制备了高透明的Yb:YAG陶瓷。以碳酸氢铵为沉淀剂,分别以纯水或乙醇/水混合物为溶剂,采用共沉淀法合成了5at%Yb:YAG纳米粉体。在1250℃下煅烧4h得到的所有粉体均为纯YAG相。与纯水溶剂制备的粉体相比,醇水溶剂制备的粉体具有更小的平均晶粒尺寸和更低的团聚程度。以醇水溶剂制备的粉体为原料,采用真空烧结法在不添加烧结助剂的情况下成功制备了5at%Yb:YAG透明陶瓷,并对1500~1825℃烧结20 h和1800℃烧结10~50 h所得陶瓷的微观结构和直线透过率进行了探究。除在1825℃下烧结20 h所得的陶瓷外,其余的5at%Yb:YAG陶瓷都具有均匀的微观结构。在1800℃下烧结50 h制备的5at%Yb:YAG陶瓷具有最高的光学质量,在1100和400 nm处的直线透过率分别为78.6%和76.7%(样品厚度为2.2mm)。该Yb:YAG透明陶瓷在937nm处的吸收截面为5.03×10~(–21)cm~2,在1031nm处的发射截面为13.48×10~(–21) cm~2。  相似文献   

10.
采用共沉淀法合成了Ce,Pr:YLu AG粉末,在1450℃下煅烧可获得石榴石结构纯相。经过压制成型、固相烧结等工艺制备了多晶料棒,TEM显示二次烧结获得的料棒具有良好的结晶性。采用光学浮区法生长了Ce,Pr:YLu AG晶体。晶体通体透明,呈浅黄色,肩部有少量裂纹。透过率达到81.8%,接近于理论值84.2%。晶体在460 nm波长激发下呈现530 nm发射带和610 nm发射峰,分别对应Ce3+和Pr3+的特征发射,表明Ce3+可以向Pr3+进行能量转移;在487 nm激发下晶体仅出现Pr3+离子的特征发射峰。Ce,Pr:YLu AG晶体色坐标为(0.474,0.495),比商用Ce:YAG荧光粉更靠近红光区域,可以弥补现有荧光粉不足,更适合制造白光LED。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号