首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
现有的对多维数据进行聚类的常用聚类算法,通常需要事先给定聚类数k.但在大多数情况下,聚类数k事先无法确定,因此需要对最佳聚类数k进行优化处理.采用基于微粒群算法的聚类算法.为了解决微粒群聚类算法无法确定聚类数k的现象,通过k均值算法的引入,实现最佳聚类数k的求解和聚类有效性函数的构造,试验证明引入类间距离的聚类有效性检测函数对最佳聚类数判别科学,同时由于检测函数中类间距离权重的引入使该检测函数可以更好地应用于现实数据分析.  相似文献   

2.
在现有的自适应蚂蚁聚类算法中,自适应参数的调整往往凭经验取值,从而影响聚类质量。针对该问题,提出一种利用快速模拟退火算法实现蚂蚁聚类自适应参数动态调整的改进方法。基于该算法构建的入侵检测系统无需预先指定簇的数目,也不要求满足正常行为的数目远大于入侵行为的数目等条件。对KDD CUP1999数据集的仿真实验结果表明,该算法可以得到较理想的聚类,对未知入侵有较好的检测效果。  相似文献   

3.
基于粗糙集的改进K-Modes聚类算法   总被引:3,自引:0,他引:3  
传统的K-Modes算法采用简单匹配的方法来计算对象之间的距离,并没有充分考虑同一属性下的两个不同值之间的相似性.基于粗糙集中的上、下近似,提出了一种新的距离度量,并重新定义了类中心,对传统K-Modes算法进行了改进.与其他改进K-Modes算法进行了比较,实验结果表明,基于粗糙集的改进K-Modes算法有效地提高了聚类精度.  相似文献   

4.
尽管蚁群优化算法在优化计算中有大量应用,但在大规模优化问题中蚁群算法仍存在搜索时间过长、易于停滞现象等等应用瓶颈。基于这些原因,根据经济学组织交易成本理论,文中提出一种新的通过聚类来降低优化问题规模的蚁群优化算法:基于聚类的蚂蚁优化算法,并从理论上表明比其他蚁群优化算法提高了收敛速度并延迟停滞现象。  相似文献   

5.
尽管蚁群优化算法在优化计算中有大量应用,但在大规模优化问题中蚁群算法仍存在搜索时间过长、易于停滞现象等等应用瓶颈.基于这些原因,根据经济学组织交易成本理论,文中提出一种新的通过聚类来降低优化问题规模的蚁群优化算法:基于聚类的蚂蚁优化算法,并从理论上表明比其他蚁群优化算法提高了收敛速度并延迟停滞现象.  相似文献   

6.
数据挖掘中的聚类算法综述*   总被引:30,自引:0,他引:30  
聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。  相似文献   

7.
研究了一种蚂蚁聚类算法,分析了算法的流程和优缺点,并在此基础上提出了一种名为增强蚂蚁聚类算法的聚类算法。增强蚂蚁聚类算法通过添加一种新聚类蚂蚁,减少了算法中孤立点的数目,改善了算法的聚类效果。设计了实验模型,用于检验增强蚂蚁算法在入侵检测中的应用效果。以KDDCUP 99数据集为检测数据源,对增强蚂蚁聚类算法应用于入侵检测进行了实验,实验结果表明,该算法对入侵数据的检测有较高的检测率和较低的误报率。  相似文献   

8.
针对现有的Neural-Gas算法进行改进,提出了一种新的聚类算法。改进之处在于:一个点对一个簇的质心的影响程度取决于该点到其他更近的簇的质心的距离值,而不仅仅是点与簇质心间距离值按大小排列次序的序号。在几个数据集上的实验结果表明,该算法在熵、纯度、F1值、rand index、规范化互信息NMI等五个指标上优于K-means算法、Neural-Gas算法等其他几种聚类算法,该算法是一种较好较快的算法。  相似文献   

9.
从模式的相似度信息和支持度大小两方面分析了前人聚类算法中采用的距离函数的缺陷,提出了改进距离函数的新算法—Mix算法。实验研究证明,算法在实现过程中可以相应减少时间消耗和聚类结果的错误程度,提高聚类质量,从而得到比较好的聚类效果。  相似文献   

10.
针对现有的 Neural-Gas 算法进行改进,提出了一种新的聚类算法。改进之处在于:一个点对一个簇的质心的影响程度取决于该点到其他更近的簇的质心的距离值,而不仅仅是点与簇质心间距离值按大小排列次序的序号。在几个数据集上的实验结果表明,该算法在熵、纯度、F1值、rand index、规范化互信息 NMI 等五个指标上优于 K-means 算法、Neural-Gas 算法等其他几种聚类算法,该算法是一种较好较快的算法。  相似文献   

11.
由于当今的网络数据是海量的,因此科研人员对某些问题进行研究时需要将不同属性的数据从中提取出来,然而在提取这些数据之前需要将相同数据进行聚类。数据聚类的过程,也就是寻找数据最优属性的过程,然而人工蚁群就是一种寻找问题最优解的算法,因此在本文中再次将蚁群算法在聚类中进行应用。由本文提出的聚类算法可以分为两个部分,第一部分是:通过相似性算法来衡量数据之间的相似度,第二部分是:根据第一部分的计算结果,再采用蚁群算法为需要聚类的数据选择不同的聚类中心,从而对不同属性的数据进行聚类,经过以上两个过程的计算,可以实现对数据的聚类。在本文中进行数据聚类时采用的相似性度量来代替距离的计算,是本文创新点之一,采用蚁群算法在聚类过程中来选择聚类中心也是本文的创新所在。  相似文献   

12.
目前常见的轨迹聚类大多基于OPTICS、DBSCAN和K-means等算法,但这些聚类方法的时间复杂度随着轨迹数量的增加会大幅上升。针对该问题,提出一种基于密度核心的轨迹聚类算法。通过引入密度核心的概念,设计轨迹密度计算函数以获取聚类簇的致密核心轨迹,同时利用出租车载客轨迹自身的方向和速度等属性提取轨迹特征点,减少轨迹数据量。在此基础上,根据聚类簇中致密核心轨迹与参与聚类轨迹的相似度距离判断轨迹的匹配程度,进而聚合相似轨迹,并将聚类结果储存在聚类节点中。实验结果表明,与TRACLUS和OPTICS聚类算法相比,该算法能够得到更准确的聚类效果,并且时间效率更高。  相似文献   

13.
基于蚁群算法的文本聚类算法   总被引:3,自引:2,他引:1  
针对目前文本检索后的相关反馈信息较少用于文本聚类中的问题,根据蚂蚁觅食聚类算法的思想,将文本检索后的相关反馈信息应用到文本聚类过程中,提出一种基于蚁群算法的文本聚类算法。分析簇的结构及其生成过程,论述聚类中簇合并的规则及算法。实验结果表明,该算法具有良好的聚类效果,能有效提高查询的文本召回率。  相似文献   

14.
文本聚类是文本信息进行有效组织、摘要和导航的重要手段,其中基于余弦相似度的K-means算法是最重要且使用最广泛的文本聚类算法之一。针对基于余弦相似度的K-means算法改进方案设计困难,且众多优异的基于欧氏距离的K-means改进方法无法适用的问题,对余弦相似度与欧氏距离的关系进行探讨,得到标准向量前提下二者的转化公式,并在此基础上定义一种与欧氏距离意义相近关系紧密的余弦距离,使原有基于欧氏距离的K-means改进方法可通过余弦距离迁移到基于余弦相似度的K-means算法中。在此基础上理论推导出余弦K-means算法及其拓展算法的簇内中心点计算方法,并进一步改进了聚类初始簇中心的选取方案,形成新的文本聚类算法MCSKM++。通过实验验证,该算法在迭代次数减少、运行时间缩短的同时,聚类精度得到提高。  相似文献   

15.
基于清晰半径的模糊点二次聚类算法   总被引:1,自引:0,他引:1  
高翠芳  胡权 《计算机应用》2013,33(2):547-582
针对模糊C-均值(FCM)聚类算法在模糊边界上容易出现划分错误的问题,提出一种对模糊点进行二次处理的改进算法。该算法以各类中的数据分布密度为依据,首先利用清晰点构成超球体中心区域,然后基于中心区域的清晰半径定义一种新的相似性距离,并利用该距离对模糊点的隶属度进行二次计算,重新确定其类别归属。实验结果显示,改进算法能有效纠正分类错误,提高模糊点的清晰度,在密度差异较大的数据集上具有一定的应用潜力。  相似文献   

16.
K-means算法是数据挖掘领域研究、应用都非常广泛的一种聚类算法,其各种衍生算法很多,其中包括近年出现的以点对称距离为测度的K-means聚类算法。在点对称距离聚类算法的基础上提出一种新的聚类算法,根据对对称性的分析,为对称性的描述增加方向约束,提高对称距离的描述准确性,以此来提高聚类的准确性。同时,针对对称点成对出现的特点,调整了聚类过程中的收敛策略,以对称点对连线中点计算聚类中心,改善了基于对称距离的聚类算法收敛性能。通过数值仿真比较了所提算法与原有算法的优劣,结果显示该算法在计算复杂度不变的条件下获得了更准确的结果,聚类结果更接近数据的真实分类。  相似文献   

17.
针对基于VSM(vector space model)的文本聚类算法忽略了词之间的语义信息和各维度之间的关系,导致文本的相似度计算不够精确,提出了一种基于语义相似度的群智能文本聚类的新方法。该方法融合了模拟退火算法的全局搜索和蚁群算法的正反馈能力。其思路是,首先从语义上分析文本,利用K-均值算法进行文本聚类,再根据K-均值算法的结果,使用蚁群和模拟退火算法进行调整聚类。测试结果表明这种算法能够提高聚类精度和召回率,也验证了混合算法的正确性。  相似文献   

18.
基于改进的启发式蚁群算法的聚类问题的研究   总被引:1,自引:0,他引:1  
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为“记忆银行”的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明改进的蚁群聚类算法在误分类错误率和运行时间上优于早期的蚁群聚类算法。  相似文献   

19.
提出了一种改进的自适应蚁群聚类算法(improved adaptive ant clustering,IAAC).该算法改进了原来的AM(ant movement)模型,并在此基础上提出了一种网格化的移动策略来改善蚂蚁移动的随机性,使蚂蚁有意识地往模式较多的区域移动,极大地减少了蚂蚁无效的移动,使蚂蚁迅速地找到合适的位...  相似文献   

20.
模糊C均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得FCM算法在局部范围内容易获得最优解,但在全局范围内效果较差,且FCM算法中聚类簇的个数一般需要人为设定。面对上述种种问题,文中将蚁群聚类算法和FCM聚类算法进行结合,获得了一种改进的FCM聚类算法。该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给FCM算法进行再次聚类。利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷。经过实验验证,该算法较一般FCM算法具有更好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号