首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
An accurate characterization for the deformation behavior of conductive particles is important: 1) to understand the anisotropic conductive adhesive (ACA) interconnection and 2) to optimize the ACA bonding parameter. This paper introduces an experimental technique, which has been developed to allow continuous monitoring of deformation characteristics of a single conductive particle. The load-deformation curve of a single conductive particle is measured, which provides the quantitative estimation of the mechanical and electrical characteristics of metal-coated polymer spheres used in ACAs. Based on the load-deformation result of a single conductive particle and the number of trapped particles on a bump, equivalent spring models are used to predict the deformation degree of conductive particles after flip chip assembly. For two kinds of conductive particles with different polymer cores, the mechanical and electrical characteristics of ACA interconnection were studied. Such results are used to further achieve a more sophisticated approach of the ACA bonding process and contact reliability.  相似文献   

2.
各向异性导电胶粘接可靠性研究进展   总被引:12,自引:0,他引:12  
介绍各向异性导电胶导电机理和粘接工艺,以及影响它的粘接可靠性因素和最佳参数的研究,如粘接温度、固化时间、粘接压力、粒子含量等。对各向异性导电胶粘接可靠性中的开路、短路、接触电阻与粘接压力和温度循环的关系进行了讨论,并介绍了各向异性导电胶可靠性的理论计算模型。  相似文献   

3.
Although there have been many years of development, the degradation of the electrical performance of anisotropically conductive adhesive or film (ACA or ACF) interconnection for flip-chip assembly is still a critical drawback despite wide application. In-depth study about the reliability and degradation mechanism of ACF interconnection is necessary. In this paper, the initial contact resistance, electrical performance after reliability tests, and degradation mechanisms of ACF interconnection for flip-chip-on-flex (FCOF) assembly were studied using very-low-height Ni and Au-coated Ni-bumped chips. The combination of ACF and very-low-height bumped chips was considered because it has potential for very low cost and ultrafine pitch interconnection. Contact resistance changes were monitored during reliability tests, such as high humidity and temperature and thermal cycling. The high, initial contact resistance resulted from a thin oxide layer on the surface of the bumps. The reliability results showed that the degradation of electrical performance was mainly related to the oxide formation on the surface of deformed particles with non-noble metal coating, the severe metal oxidation on the conductive surface of bumps, and coefficient of thermal expansion (CTE) mismatch between the ACF adhesive and the contact conductive-surface metallization. Some methods for reducing initial contact resistance and improving ACF interconnection reliability were suggested. The suggestions include the removal of the oxide layer and an increase of the Au-coating film to improve conductive-surface quality, appropriate choice of conductive particle, and further development of better polymeric adhesives with low CTE and high electrical performance.  相似文献   

4.
This paper describes how the material properties of conductive particles in anisotropic conductive films (ACFs) affect the electrical conductivity and the reliability of ACF interconnections for chip-on-glass (COG) applications. For the conductive particles, Au/Ni-coated polymer particles with a 5-diameter were used. Two different types of conductive particles were characterized with respect to their mechanical and electrical properties, such as ball hardness, recovery behavior, and electrical resistance. In addition, two ACFs were fabricated in the form of a double-layered structure, in which the thickness of the ACF and a nonconductive film (NCF) layer were optimized to have as many conductive particles as possible on the bump after COG bonding. The electrical contact resistance of an ACF interconnection in a COG structure depends mainly on the electrical properties of conductive particles in the ACF. The electrical reliability of an ACF interconnection in a COG structure also depends more on the electrical properties than the mechanical properties of conductive particles under a high-temperature and humid condition. Conductive particles with a lower electrical resistance, higher mechanical hardness, and lower recovery rate show better reliability than conductive particles with a higher electrical resistance, lower mechanical hardness, and higher recovery rate. Cross-sectional scanning electron microscopic (SEM) pictures of a COG interconnection show the deformation of two different conductive particles after the reliability tests. The ACF interconnections in the edge or corner of a driver IC show less reliable joints due to high absorption of moisture.  相似文献   

5.
各向异性导电胶倒装封装电子标签的可靠性   总被引:2,自引:1,他引:1  
各向异性导电胶(ACA)广泛用于RFID电子标签芯片封装,具有芯片对位方便、热压温度低和工艺时间短的优点.但ACA互连本质上是机械接触,其互连可靠性强烈依赖于粘接界面性质、胶水粘接力及环境稳定性.本文试验表明,168 h高温高湿和D20 mm心轴弯曲对芯片粘接点的电接触性能有所影响;铜模组良品率显著高于铝天线Inlay.  相似文献   

6.
随着微电子封装技术的发展,各向异性导电胶作为一种绿色的连接材料,广泛应用于电子产品中。文中主要介绍各向异性导电胶互连器件的粘接原理和影响其可靠性的各种因素,如粘接工艺参数、外界环境的干扰、各向异性导电胶的物理特性等。  相似文献   

7.
The successful design of anisotropic conductive adhesive (ACA) assemblies depends mainly on the accurate prediction of their electrical contact resistance. Among the parameters that influence this resistance, the bonding force used to compress the conductive particles against the conductive tracks during the assembly process is very important. This paper investigates how the contact resistance changes as the bonding force is removed at the end of the assembly process when the epoxy resin used to bond the surfaces has cured. The final contact resistance is determined by examining, through theoretical, experimental and numerical analyzes, the evolution of the residual stress as the elastic recovery of the compressed conductive particles and tracks takes place when the bonding force is removed. An iterative algorithm derived from methods found in fracture mechanics analysis is used to determine the relationship between the contact resistance, the adhesive strength and the stiffness of the cured resin. It is shown that smaller values of adhesive strength yield higher contact resistance values; and similarly, smaller values of modulus of elasticity of the resin lead to higher contact resistance values.  相似文献   

8.
The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer‐based spherical conductive particles in a conventional anisotropic conductive film.  相似文献   

9.
We have investigated the electrical properties of anisotropic conductive adhesive (ACA) joint using submicrometer-sized (~500 nm in diameter) silver (Ag) particle as conductive filler with the effect of pi-conjugated self-assembled molecular wires. The ACAs with submicrometer-sized Ag particles have higher current carrying capability (~3400 mA) than those with micro-sized Au-coated polymer particles (~2000 mA) and Ag nanoparticles (~2500 mA). More importantly, by construction of pi-conjugated self-assembled molecular wire junctions between conductive particles and integrated circuit (IC)/substrate, the electrical conductivity has increased by one order of magnitude and the current carrying capability of ACAs has improved by 600 mA. The crucial factors that govern the improved electrical properties are discussed based on the study of alignments and thermal stability of molecules on the submicrometer-sized Ag particle surface with surface-enhanced Raman spectroscopy (SERS), providing a fundamental understanding of conduction mechanism in ACA joints and guidelines for the formulation of high-performance ACAs in electronic packaging industry.  相似文献   

10.
The effect of bonding pressure on the electrical and mechanical properties of anisotropic conductive film (ACF) joint using nickel particles and metal-coated polymer ball-filled ACFs was investigated. The contact resistance decreases as the bonding pressure increases. Contact resistance of ACF is determined by the contact area change between particles and contact substrates. Electrical conduction through the pressure engaged contact area between conductive particles and conductor substrates is the main conduction mechanism in ACF interconnection. In addition, environmental effects on contact resistance and adhesion strength such as thermal aging, high temperature/humidity aging and temperature cycling were also investigated. Interestingly, the contact resistances of the excessively bonded samples deteriorated more than those of optimally bonded ones. Increasing contact resistance and decreasing adhesion strength after harsh environmental tests were mainly due to the loss of contact by thermal stress effect and moisture absorption, and also partially due to the formation of metal oxide on the conductive particles  相似文献   

11.
倒装芯片封装材料-各向异性导电胶的研究进展   总被引:6,自引:1,他引:5  
介绍了两种新型各向异性导电胶ACA(Anisotropic Conductive Adhesive)结构,分析了邦定压力和导电颗粒特性对常用ACA互连接触电阻的影响,综合叙述了环境因素、邦定参数、误对准、凸点高度等对ACA互连可靠性影响的研究进展.  相似文献   

12.
This paper presents the development of new anisotropic conductive adhesives (ACAs) with enhanced thermal conductivity for improved reliability of adhesive flip chip assembly under high current density condition. As the bump size in the flip chip assembly is reduced, the current density through the bump also increases. This increased current density causes new failure mechanisms, such as interface degradation due to intermetallic compound formation and adhesive swelling resulting from high current stressing. This process is found especially in high current density interconnection in which the high junction temperature enhances such failure mechanisms. Therefore, it is necessary for the ACA to become a thermal transfer medium that allows the board to act as a new heat sink for the flip chip package and improve the lifetime of the ACA flip chip joint. We developed the thermally conductive ACA of 0.63 W/m·K thermal conductivity by using a formulation incorporating the 5-μm Ni-filled and 0.2-μm SiC-filled epoxy-based binder system. The current carrying capability and the electrical reliability under the current stressing condition for the thermally conductive ACA flip chip joints were improved in comparison to conventional ACA. This improvement was attributed to the effective heat dissipation from Au stud bumps/ACA/PCB pad structure by the thermally conductive ACA.  相似文献   

13.
Failure behaviors of anisotropic conductive film (ACF) and non-conductive film (NCF) interconnects were investigated by measuring the connection resistance. The four-point probe method was used to measure the connection resistance of the adhesive joints constructed with Au bump on Si chip and Cu pad on flexible printed circuit. The interconnection reliability was evaluated by multiple reflow process. The connection resistance of the ACF joints was markedly higher than that of NCF joints, mainly due to the constriction of the current flow and the intrinsic resistance of the conductive particles in ACF joints. The connection resistances of both interconnections decreased with increasing bonding force, and subsequently converged to about 10 and 1 mOmega at a bonding force of 70 and 80 N, for the ACF and NCF joints, respectively. During the reflow process, two different conduction behaviors were observed: increased connection resistance and the termination of Ohmic behavior. The former was due to the decreased contact area caused by z-directional swelling of the adhesives, whereas the latter was caused by either contact opening in the adhesive joints or interface cracking.  相似文献   

14.
微波芯片元件的导电胶粘接工艺与应用   总被引:1,自引:0,他引:1  
导电胶常用于微波组件的组装过程,其粘接强度、导电、导热和韧性等性能指标严重影响其应用范围.分析了导电胶的国内外情况和主要性能参数,总结了混合微电路对导电胶应用的指标要求.通过微波芯片元件粘接工艺过程,分析了导电胶的固化工艺与粘接强度和玻璃化转变温度的关系、胶层厚度与热阻的关系、胶点位置和大小与粘片位置控制等方面的影响关系.测试结果显示,经导电胶粘接的芯片元件的电性能和粘接强度等指标均满足设计和使用要求,产品具有较好的可靠性和一致性.  相似文献   

15.
各向异性导电胶膜新型填充粒子的研究   总被引:6,自引:0,他引:6  
用分散聚合法合成了直径为3μm左右的聚苯乙烯核,在核表面化学镀形成带小突起的镍合金导电层,制成ACF新型填充粒子,对聚合物核做了粒径分布、比表面积测试,对核以及导电微球做了环境扫描电镜(ESEM)测试。结果表明:制备的导电微球密度小,呈单分散,镀层结构致密,镀层表面形成了近球形、锥形及其它不定形突起。这些突起可以刺穿电极的氧化膜。实践证明通过控制工艺参数实现控制镀层结构是一条可行方法。  相似文献   

16.
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.  相似文献   

17.
In this paper, the effects of heating rate during anisotropic conductive film (ACF) curing processes on ACF material properties such as thermomechanical and rheological properties were investigated. It was found that as the heating rate increased, the coefficient of thermal expansion (CTE) of the ACF increased, and the storage modulus and glass transition temperature $(T _{g})$ of the ACF decreased. Variation of the ACF material properties are attributed to cross-linking density, which is thought to be related with the ACF density. In addition, as the heating rate increased, the minimum viscosity of the ACF decreased and the curing onset temperature increased during the curing process. The similar phenomenon was also found in in-situ contact resistance measurement. As the heating rate increased, contact resistance establishing temperature increased and the contact resistances of the ACF flip chip assemblies decreased. The decrease in contact resistance was due to larger conductive particle deformation which leads to larger electrical contact area. The effect of the heating rate of ACFs on thermal cycling (T/C) reliability of flip chip assemblies was also investigated. As the heating rate increased, the contact resistances of the ACF flip chip assembly rapidly increased during the T/C test. The T/C reliability test result was analyzed by two terms of shear strain and conductive particle deformation. Reduced gap of joints due to reduced ACF viscosity resulted in larger shear strain. Moreover, many cracks were observed at metal-coated layers of conductive particles due to larger deformation.   相似文献   

18.
Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances, resulting in a high performance and cost-competitive packaging method. This paper describes the usefulness of low cost flip-chip assembly using electroless Ni/Au bump and anisotropic conductive films on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed as a low cost bumping method. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with Ni3P precipitation above 300°C causes an increase of hardness and an increase of the intrinsic stress. As interconnection material, modified ACFs composed of nickel conductive fillers for conductive fillers, and nonconductive fillers for modification of film properties, such as coefficient of thermal expansion (CTE), were formulated for improved electrical and mechanical properties of ACF interconnection. Three ACF materials with different CTE values were prepared and bonded between Si chips and FR-4 boards for the thermal strain measurement using moire interferometry. The thermal strain of the ACF interconnection layer, induced by temperature excursion of 80°C, was decreased according to the decreasing CTEs of ACF materials. This result indicates that the thermal fatigue life of ACF flip chip assembly on organic boards, limited by the thermal expansion mismatch between the chip and the board, could be increased by low CTE ACF  相似文献   

19.
High voltage and high current power modules are key components for traction applications. While the modules are exposed to harsh stress conditions all over their lifetime, high reliability is of decisive importance in this field of application. In power electronic packages wire bonding is used for the electrical interconnection from the chips to the output pins. Wire bond lift-off and solder fatigue are limiting the reliability. In this work we investigate the initiation and growth of cracks in the wire bonds using finite-element analysis.  相似文献   

20.
Electrical conduction through anisotropically conductive adhesive (ACA) is caused by deformation of metal fillers under pressure and heat. In this work, the hardness of the electrical particles under various deformation degrees was determined by nano-indentor measurements and the electrical resistance of the electrical contacts was measured under various deformation degrees. Theoretical model and simulation have been developed for the microscopic mechanism of the electrical conduction through metal fillers in the anisotropically conductive adhesive. By comparing with experimental data it is concluded that the deformation of the metal filler in our ACA is plastic even at rather low external load. Further theoretical simulation reveals two important aspects of the conductance characteristics. The conductance is improved by increasing the external load but the dependence of the conductance on the spatial position of the metal filler becomes stronger. Design and optimization of the ACA with respect to the absolute value of the electric conductance and its dependence on the spatial position of the metal filler are of essential importance for the electronics packaging application of the anisotropically conductive adhesives  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号