首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two CMOS oversampling delta-sigma (ΔΣ) magnetic-to-digital converters (MDCs) are proposed. The first MDC consists of the magnetic operational amplifier (MOP) and a first-order switched-capacitor (SC) ΔΣ modulator. The second one directly uses the MOP to realize a first-order SC ΔΣ modulator. They can convert the external magnetic field into digital form. Both circuits were fabricated in a 0.5-μm CMOS double-poly double-metal (DPDM) process and operated at a 5-V supply voltage and the nominal sampling rate of 2.5 MHz. The dynamic ranges of these converters are at least ±100 mT. The gain errors within ±100 mT are less than 3% and the minimum detectable magnetic field can reach as small as 1 mT. The resolutions are 100 μT for both of the two MDCs. The measured sensitivities are 1.327 mv/mT and 0.45 mv/mT for the first and the second MDC, respectively  相似文献   

2.
An 81-MHz CMOS IF receiver for digital wireless applications is presented. The receiver consists of a continuous-time IF amplifier, a subsampling switched-capacitor gain stage, and a sixth-order bandpass ΣΔ A/D converter. Incorporating 24 dB of programmable gain, the receiver achieves 92 dB of dynamic range in a 200 kHz bandwidth. Due to its IF sampling nature, the reciever is immune to de offset, flicker noise, and errors due to mismatches between I and Q signal paths. By utilizing a pseudo two-path resonator architecture in the bandpass ΣΔ A/D converter, a stable passband center frequency which is immune to capacitor mismatch is achieved. Implemented in 0.8-μm CMOS, this chip uses a single 3 V supply and consumes 14.4 mW of power  相似文献   

3.
The design of a low-voltage and low-power ΔΣ analog-to-digital (A/D) converter is presented. A third-order single-loop ΔΣ modulator topology is implemented with the differential modified switched op-amp technique. The modulator topology has been transformed as to accommodate half-delay integrators. Dedicated low-voltage circuit building blocks, such as a class AB operational transconductance amplifier, a common-mode feedback amplifier, and a comparator are treated, as well as low-voltage design techniques. The influence of very low supply voltage on power consumption is discussed. Measurement results of the 900-mV ΔΣ A/D converter show a 77-dB dynamic range in a 16-kHz bandwidth and a 62-dB peak signal-to-noise ratio for a 40-μW power consumption  相似文献   

4.
流水线模数转换器研究现状   总被引:1,自引:1,他引:0  
基于运算放大器(OTA)的开关电容技术是目前流水线模数转换器(ADC)的主要实现方式.由于该技术需要使用高增益宽带宽OTA来保证电路的速度和精度,基于该技术的流水线ADC难以在纳米级CMOS工艺条件下实现并且功耗限制日益突出.文章首先介绍了流水线ADC的基本原理,其次介绍了基于OTA的开关电容实现技术及其在纳米级CMO...  相似文献   

5.
A CMOS ΣΔ modulator for speech coding with continuous-time loopfilter is presented. Compared to switched-capacitor implementations, the relaxed bandwidth requirements of the active elements of the loopfilter reduce the power consumption. Furthermore, the need for an antialiasing filter at the modulator input is eliminated. A fourth-order, 64× oversampling ΣΔ modulator for application in portable telephones was designed and shows 80 dB dynamic range over the 300-3400 Hz voice bandwidth. Its input is directly connected to the microphone (maximum 40 mVRMS). Total harmonic distortion (THD) is below -70 dB at 95 μA current consumption from a 2.2 V supply voltage. The active die area of the modulator is 0.5 mm2 in a standard 0.5-μm CMOS process  相似文献   

6.
The design of a delta-sigma (ΔΣ) analog-to-digital converter (ADC) for direct voltage readout of an electret microphone is presented. The ADC is integrated on the same chip with a bandgap voltage reference and is designed to be packaged together with an electret microphone. Having a power consumption of 1.7 mW from a supply voltage of 1.8 V, the circuit is well suited for use in mobile applications. The single-loop, single-bit, fourth-order ΔΣ ADC operates at 64 times oversampling for a signal bandwidth of 11 kHz. The measured dynamic range is 80 dB and the peak signal-to-(noise+distortion) ratio is 62 dB. The harmonic distortion is minimized by using an integrator with an instrumentation amplifier-like input which directly integrates the 125-mV peak single-ended voltage generated by the microphone. A combined continuous-time/switched-capacitor design is used to minimize power consumption  相似文献   

7.
It is shown that for delta-sigma (ΣΔ) frequency-to-digital conversion (FDC) there is no need for a ΣΔ modulator, since a limited FM signal itself may be considered as an asynchronous ΣΔ bit-stream. By feeding the limited FM signal directly to a sinc2 ΣΔ decimator, a triangularly weighted zero-crossing counter FDC is introduced, providing ΣΔ noise shaping. The results measured confirm the theory  相似文献   

8.
A 3.3-V bandpass ΣΔ modulator for IF sampling at 10.7 MHz in digital radio applications has been developed. The modulator presents a sixth-order single-loop architecture and features a 74-dB dynamic range in a 2OO-kHz signal bandwidth (FM signal), while for a 9-kHz signal bandwidth (AM signal) the dynamic range is 88 dB. The modulator has been integrated in a standard 0.35-μm CMOS technology using switched-capacitor technique and consumes 76 mW from a single 3.3V supply  相似文献   

9.
The authors present a ΣΔ modulator (ΣΔM) which combines single-bit and multi-bit quantisation in a cascade architecture to obtain high resolution with a low oversampling ratio. It is less sensitive to the nonlinearity of the digital-to-analogue (DAC) than those previously reported, thus enabling the use of very simple analogue circuitry with neither calibration nor trimming required  相似文献   

10.
The design of a low-power, low-voltage, 12-b 8-kHz bandwidth ΣΔ modulator for high-quality voice that consumes only 0.34 mW at 1.95 V supply is described. The modulator employs a special architecture in which a third-order modulator is stabilized by a local feedback loop around each integrator. Unlike multistage ΣΔ modulators, this architecture is very tolerant to the modest dc gain of low voltage op-amps. The architecture, together with special circuit techniques, permits a low-voltage switched capacitor implementation at 1.95 V-3.3 V supply using standard 1.2-μm CMOS technology  相似文献   

11.
12.
This paper describes a new transmitter architecture suitable for wideband GMSK modulation. The technique uses direct modulation of ΔΣ frequency discriminator (ΔΣFD)-based synthesizer to produce the modulated RF signal without any up-conversion. Digital equalization is used to extend the modulation data rate far beyond the synthesizer closed-loop BW. A prototype 1.9-GHz GSM transmitter was constructed consisting of a ΔΣFD-based synthesizer and a digital transmit filter. The synthesizer consists of an 0.8-μm BiCMOS ΔΣFD chip, a digital signal processor FPGA, and an off-chip D/A converter, filter, and VCO. Measured results, using 271-kbit/s GSM modulation, demonstrate data rates well in excess of the 30-kHz synthesizer closed-loop BW are possible with digital equalization. Without modulation, the synthesizer exhibits a -76-dBc spurious noise level and a close-in phase noise of -74 dBc/Hz  相似文献   

13.
The trend toward digital signal processing in communication systems has resulted in a large demand for fast accurate analog-to-digital (A/D) converters, and advances in VLSI technology have made ΔΣ modulator-based A/D converters attractive solutions. However, rigorous theoretical analyses have only been performed for the simplest ΔΣ modulator architectures. Existing analyses of more complicated ΔΣ modulators usually rely on approximations and computer simulations. In the paper, a rigorous analysis of the granular quantization noise in a general class of ΔΣ modulators is developed. Under the assumption that some input-referred circuit noise or dither is present, the second-order asymptotic statistics of the granular quantization noise sequences are determined and ergodic properties are derived  相似文献   

14.
A differential switched-capacitor amplifier   总被引:1,自引:0,他引:1  
A monolithic realization of a switched-capacitor amplifier is reported. It has op-amp offset voltage cancellation without requiring the output to slew to ground each time the amplifier is reset. The amplifier is very insensitive to low op-amp gain. It also has clock-feedthrough cancellation. Finally, it can be used as a differential amplifier with both inputs being sampled at the same instance.  相似文献   

15.
16.
The use of magnetic bearings in small biomedical devices poses new challenges for the integration of complex embedded electronic systems. This paper describes a low-power fully integrated two-channel system-on-a-chip (SOC) for two-dimensional (2-D) differential position sensing in magnetic bearings through two pairs of eddy current sensors. It consists of a 312.5 kHz switched-capacitor (SC) sine-wave generator, a two-channel data acquisition unit including a 19-dB quadruple difference instrumentation amplifier, and a demodulating 12-bit ΣΔ analog-to-digital (A/D) converter with DSP-compatible serial interface. A signal-to-noise-plus-distortion ratio (SNDR) of more than 60 dB has been achieved, which corresponds to a resolution of better than 3 μm at a maximum displacement range of 3 mm. The entire system has been integrated in a standard 0.6-μm CMOS technology and consumes 10 mW at a 2.7-V supply  相似文献   

17.
This paper presents a CMOS 0.8-μm switched-current (SI) fourth-order bandpass ΣΔ modulator (BP-ΣΔM) IC capable of handling signals up to 1.63 MHz with 105-bit resolution and 60-mW power consumption from a 5-V supply voltage. This modulator Is intended for direct A/D conversion of narrow-band signals within the commercial AM band, from 530 kHz to 1.6 MHz. Its architecture is obtained by applying a low-pass-to-bandpass transformation (z-1 →-z-2) to a 1-bit second-order low-pass ΣΔ modulator (LP-ΣΔM). The design of basic building blocks is based upon a detailed analysis of the influence of SI errors on the modulator performance, followed by design optimization. Memory-cell errors have been identified as the dominant ones. In order to attenuate these errors, fully differential regulated-folded cascode memory cells are employed. Measurements show a best SNR peak of 65 dB for signals of 10-kHz bandwidth and an intermediate frequency (IF) of 1.63 MHz. A correct noise-shaping filtering is achieved with a sampling frequency of up to 16 MHz  相似文献   

18.
Kong  S.K. Ku  W.H. 《Electronics letters》1996,32(12):1052-1054
A chopper stabilised ΠΔΣ ADC architecture is proposed. A chopper stabilised version of ΠΔΣ ADC, which has identical performances to the regular ΠΔΣ ADC but is immune to low frequency noises such as DC offsets, can be obtained without adding hardware complexities  相似文献   

19.
A 24-bit 192-kHz sample-rate digital-to-analog converter (DAC) achieves 120-dB A-weighted dynamic range in the 20-kHz band, and consumes 310 mW with a 5-V power supply. A third-order five-bit ΔΣ architecture optimized for high-end consumer audio has been developed and used. A switched-capacitor (SC) DAC combined with infinite-impulse response (IIR) and finite-impulse response (FIR) filters is employed to increase immunity to clock jitter, and reduce analog power. Partial-range dynamic element matching (DEM) enhances mismatch shaping with reduced circuit overhead. The 7.8-mm2 chip fabricated in 0.5-μ m CMOS integrates a stereo DAC and all functions required for DVD-audio playback  相似文献   

20.
This paper examines the architecture, design, and test of continuous-time tunable intermediate-frequency (IF) fourth-order bandpass delta-sigma (BP ΔΣ) modulators. Bandpass modulators sampling at high IFs (~100 MHz) allow direct sampling of the RF signal-reducing analog hardware and make it easier to realize completely software programmable receivers. This paper presents circuit design of and test results from continuous-time fourth-order BP ΔΣ modulators fabricated in AlInAs/GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (fT) of 80 GHz and a maximum frequency of oscillation (fMAX) of about 130 GHz. Operating from ±5-V power supplies, a fabricated 180-MHz IF fourth-order ΔΣ modulator sampling at 4 GS/s demonstrates stable behavior and achieves 75.8 dB of signal-to-(noise+distortion)-ratio (SNDR) over a 1-MHz bandwidth. Narrowband performance (~1 MHz) performance of these modulators is limited by thermal/device noise while broadband performance (~60 MHz), is limited by quantization noise. The high sampling frequency (4 GS/s) in this converter is dictated by broadband (60 MHz) performance requirements  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号