首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A total of 4172 samples of milk, cheese and other dairy products were examined over a 1-year period for the presence of Listeria species. Strains of Listeria were found most frequently in soft, ripened cows milk cheese; 63 out of 769 (8.2%) samples contained Listeria monocytogenes, 25 samples contained species other than L. monocytogenes, and 18 samples contained both L. monocytogenes and other Listeria spp. Eleven samples of pasteurized cows milk (1.1%) from four dairies contained L. monocytogenes, and other Listeria spp. were isolated from a further five samples. Goats and ewes milk and their products, yogurt, cream and ice cream also occasionally contained Listeria spp. Levels of Listeria were usually low, but 20 samples of cheese contained more than 1000 cfu/g. Most strains of L. monocytogenes belonged to serotype 1/2 (58%) or serotype 4b (33%).  相似文献   

2.
In total, 71 samples of retail raw milk cheeses produced or imported in Belgium and samples of Belgian farmhouse cheeses were examined for cotiforms, β-glucuronidase positive Escherichia coli, Escherichia coli O157 , Staphylococcus aureus, Salmonella spp. , Listeria spp. and Listeria monocytogenes. The presence of staphylococcal enterotoxins was investigated on samples with S. aureus counts higher than 103 cfu/g. The incidence of coliforms, β-glucuronidase positive E. coli and S. aureus was higher in soft than in blue veined, semi-hard, hard and fresh cheeses. Four mold-ripened soft cheeses were positive for E. coli O157. One of the 4 cheeses was positive for verotoxin VT2. Staphylococcal enterotoxins were detected in 1 soft redsmear cheese, which was positive for L. monocytogenes. L. monocytogenes was also detected in one fresh cheese . Salmonella was not detected in any of the 71 raw milk cheeses.  相似文献   

3.
Retail samples of 100 raw chickens and 222 U.K. and imported soft cheeses were examined for the presence of Listeria species. 60% of raw chickens (fresh and frozen) were contaminated with L. monocytogenes and 28% with other Listeria spp. including L. welshimeri, L. seeligeri and L. innocua. Six serotypes of L. monocytogenes were represented (1/2, 3a, 3b, 3c, 4b, 4d) of which more than one were isolated from some samples. 10% of the soft cheeses examined were found to contain L. monocytogenes at levels from less than 10(2) cfu/g to 10(5) cfu/g. The incidences in cheeses from various countries were Italy (16%), France (14%), Cyprus (10%) and the U.K. (4%). Only 2 serotypes (1/2 and 4b) were isolated, some samples containing both. L. innocua was the only other Listeria sp. found. There was no correlation between either the contamination with E. coli or the processing of the original milk used to make the cheeses (raw or pasteurized) and the presence of L. monocytogenes or other Listeria spp. The contribution of contaminated food to the epidemiology of listeriosis in the U.K. is discussed.  相似文献   

4.
Because of renewed interest in specialty cheeses, artisan and farmstead producers are manufacturing surface-mold-ripened soft cheeses from raw milk, using the 60-day holding standard (21 CFR 133.182) to achieve safety. This study compared the growth potential of Listeria monocytogenes on cheeses manufactured from raw or pasteurized milk and held for > 60 days at 4 degrees C. Final cheeses were within federal standards of identity for soft ripened cheese, with low moisture targets to facilitate the holding period. Wheels were surface inoculated with a five-strain cocktail of L. monocytogenes at approximately 0.2 CFU/ cm2 (low level) or 2 CFU/cm2 (high level), ripened, wrapped, and held at 4 degrees C. Listeria populations began to increase by day 28 for all treatments after initial population declines. From the low initial inoculation level, populations in raw and pasteurized milk cheese reached maximums of 2.96 +/- 2.79 and 2.33 +/- 2.10 log CFU/g, respectively, after 60 days of holding. Similar growth was observed in cheese inoculated at high levels, where populations reached 4.55 +/- 4.33 and 5.29 +/- 5.11 log CFU/g for raw and pasteurized milk cheeses, respectively. No significant differences (P < 0.05) were observed in pH development, growth rate, or population levels between cheeses made from the different milk types. Independent of the milk type, cheeses held for 60 days supported growth from very low initial levels of L. monocytogenes introduced as a postprocess contaminant. The safety of cheeses of this type must be achieved through control strategies other than aging, and thus revision of current federal regulations is warranted.  相似文献   

5.
PRESENCE OF LISTERIA IN MEXICAN CHEESES   总被引:1,自引:0,他引:1  
The presence of Listeria was investigated in ripened cheeses (Chihuahua, Manchego) and fresh cheese (Panela) from street vendors and retail stores in Mexico City. Cheeses were tested for Listeria, pH, NaCl, moisture and fat. Listeria selective cold enrichment was used to recover Listeria from positive samples. Fresh cheese had the lowest pH and NaCl contents and the highest moisture Chihuahua and Manchego cheeses made with pasteurized milk were negative for Listeria. Panela cheese samples were the most contaminated. The presence of Listeria was 65% in fresh cheeses: Listeria murrayi 20% , Listeria inoccua 15% , Listeria grayi 15%, and Listeria monocytogenes 15%. L. monocytogenes serotypes 1/2a, 1/2b and 4b were isolated from positive samples.  相似文献   

6.
Critical control points (CCPs) associated with Minas Frescal cheese (a Brazilian soft white cheese, eaten fresh) processing in two dairy factories were determined using flow diagrams and microbiological tests for detection of Listeria monocytogenes and other species of Listeria. A total of 218 samples were collected along the production line and environment. The CCPs identified were reception of raw milk, pasteurization, coagulation and storage. Thirteen samples were positive for Listeria; 9 samples were Listeria innocua, 2 were Listeria grayi and 2 were L. monocytogenes. In factory A, Listeria was found in 50% of raw milk samples, 33.3% of curd samples, 16.7% of pasteurized milk samples, 16.7% of cheese samples and 25% of rubber pipes used to transport the whey. The microorganism was not obtained from environmental samples in this plant. In factory B, Listeria was found in one sample of raw milk (16.7%) and in three samples of environment (17.6%) and L. monocytogenes was obtained from raw milk (16.7%) and the floor of the cheese refrigeration room (14.3%). Two serotypes, 4b and 1/2a, were observed among the strains of L. monocytogenes isolated, both which are frequently involved in outbreaks of food-borne listeriosis and sporadic cases of the disease all over the world.  相似文献   

7.
Two studies of retail fresh, ripened and semi-hard cheeses made from raw, thermized or pasteurized milk were undertaken in the UK during 2004 and 2005 to determine the microbiological quality of these products. Using microbiological criteria in European Commission Recommendations 2004/24/EC and 2005/175/EC, 2% of both raw, thermized (37/1819 samples) and pasteurized (51/2618 samples) milk cheeses were of unsatisfactory quality. Raw or thermized milk cheeses were of unsatisfactory quality due to levels of Staphylococcus aureus at 10(4)cfu g(-1), Escherichia coli at 10(5)cfu g(-1), and/or Listeria monocytogenes at 10(2)cfu g(-1), whereas pasteurized milk cheeses were of unsatisfactory quality due to S. aureus at 10(3)cfu g(-1) and/or E. coli at 10(3)cfu g(-1). Salmonella was not detected in any samples. Cheeses were of unsatisfactory quality more frequently when sampled from premises rated as having little or no confidence in management and control systems, and stored/displayed at above 8 degrees C. Raw or thermized milk cheeses were also more likely to be of unsatisfactory quality when they were unripened types, and pasteurized milk cheeses when they were: semi-hard types; from specialist cheese shops or delicatessens; cut to order. These results emphasize the need for applying and maintaining good hygiene practices throughout the food chain to prevent contamination and/or bacterial growth. Labelling of cheeses with clear information on whether the cheese was prepared from raw milk also requires improvement.  相似文献   

8.
The aim of this study was to determine the transmission routs of Listeria spp. in dairy farms manufacturing fresh cheese made from ovine and caprine raw milk and to evaluate the impact of Listeria monocytogenes mastitis on raw milk contamination. Overall, 5,799 samples, including 835 environmental samples, 230 milk and milk product samples, and 4,734 aseptic half-udder foremilk samples were collected from 53 dairy farms in the dairy intensive area of Lower Austria. Farms were selected for the study because raw milk was processed to cheese that was sold directly to consumers. A total of 153 samples were positive for Listeria spp., yielding an overall prevalence of 2.6%; L. monocytogenes was found in 0.9% of the samples. Bulk tank milk, cheese, and half-udder samples were negative for Listeria spp. Because none of the sheep and goats tested positive from udder samples, L. monocytogenes mastitis was excluded as a significant source of raw milk contamination. L. monocytogenes was detected at 30.2% of all inspected farms. Swab samples from working boots and fecal samples had a significantly higher overall prevalence (P < 0.001) of L. monocytogenes (15.7 and 13.0%, respectively) than did swab samples from the milk processing environment (7.9%). A significant correlation was found between the prevalence of L. monocytogenes in the animal and in the milk processing environment and the silage feeding practices. Isolation of L. monocytogenes was three to seven times more likely from farms where silage was fed to animals throughout the year than from farms where silage was not fed to the animals.  相似文献   

9.
In this paper we describe the development of a quantitative PCR (qPCR) technique to detect, quantify and determine the vitality of Listeria monocytogenes in foods. The method was based on the amplification of the intergenic region spacer (IGS) between the 16S and 23S rRNA genes. A panel of more than 100 strains of Listeria spp. and non-Listeria was used in order to verify the specificity of the primers and Taqman probe and amplification signals were obtained only when L. monocytogenes DNA and RNA were loaded in the qPCR mix. Standard curves were constructed in several food matrices (milk, meat, soft cheese, fermented sausage, cured ham and ready-to-eat salad). The quantification limit was of 10(3)-10(4) cfu/g or ml, while for the determination of vitality it was 10(4)-10(5) cfu/g or ml. After an overnight enrichment in BHI at 37 degrees C also 10 cfu/g or ml could be detected in all the matrices used in this study. When we applied the protocol to food samples collected from the market or from small food processing plants, on a total number of 66 samples, 4 fresh cheeses from raw milk gave positive results prior to the overnight incubation, while 9 samples, of which only one represented by fresh meat and the others by cheeses from raw milk, were positive after the enrichment. Out of the 4 positive samples, only one could be quantified and it was determined to contain 4x10(3) cfu/g.  相似文献   

10.
Listeria monocytogenes in foods in Norway   总被引:4,自引:0,他引:4  
Three-hundred-and-eighty-two samples of different retail food items in Norway (imported soft cheese, raw chicken, minced meat, fermented sausages, vacuum-packed processed meat products, smoked salmon, peeled shrimps, raw minced fish) and 78 carcass samples (sheep, pig, cattle), were screened for Listeria monocytogenes. Of the 460 samples investigated, 78 were found to contain L. monocytogenes. Five of these contained greater than 10(3) cfu/g, four greater than 10(2) cfu/g, while the remainder were shown to contain L. monocytogenes only after enrichment. L. monocytogenes was isolated most frequently from raw chicken, sporadically from soft cheese, shrimps, processed meat products and smoked salmon, and not at all from carcasses and fermented sausages.  相似文献   

11.
The ability of Listeria monocytogenes to survive the Mexican Manchego and Chihuahua cheese-making processes and its persistence during the ripening stages of both cheeses was examined. Commercial pasteurized and homogenized whole milk was inoculated with Listeria monocytogenes (strain ATCC 19114) to a level between 2 x 10(6) and 9 x 10(6) CFU/ml. The milk was used to make Mexican Manchego and Chihuahua cheeses in a 25-l vat. Mexican Manchego cheese was ripened for 5 days and Chihuahua cheese for 6 weeks at 12 degrees C and 85% RH. Listeria present in the cheese was enumerated by diluting samples in sterile 0.1% peptone water and plating on Oxford agar. Duplicate samples were taken at each step of the manufacturing process. During the first week of ripening samples were taken daily from both cheeses. For Chihuahua cheese, samples were taken weekly after the first week of the ripening stage. During the manufacture of Mexican Manchego cheese, Listeria counts remained relatively constant at 10(6) CFU/ml, while with Chihuahua cheese there was a one log decrease in numbers (10(6) to 10(5) CFU/ml). After pressing both curds overnight, numbers of bacteria decreased in Mexican Manchego cheese to 8.2 x 10(5) but increased in Chihuahua cheese from 1.7 x 10(5) to 1.2 x 10(6) CFU/ml. During the ripening stage, counts of Listeria remained constant in both cheeses. However, since the Chihuahua cheese ripening stage is about 6 weeks, the number of bacteria decreased from 2 x 10(6) to 4 x 10(4) CFU/g. The results show that Listeria monocytogenes is able to survive the manufacture and ripening processes of both Mexican cheeses.  相似文献   

12.
Soft and red smear cheeses are frequently contaminated by Listeria monocytogenes , sometimes at relatively high concentration (< 105 CFUg-1). This bacterium is radiosensitive (D10 value of approximately 0.45 kGy) but irradiation of the whole cheese by X-rays induced off-flavours when the dose exceeded 1.0 kGy. Irradiation could be effective in eliminating L. monocytogenes only from lightly contaminated cheeses (> 102CFU g-1).
L. monocytogenes appears only in the rind (where the pH is greater than 6.3) and never grows in the core of the cheese. Under these conditions, a specific irradiation of the rind after ripening, with a low-energy electron beam at relatively high doses (up to 3.0 kGy), allows the total elimination of L. monocytogenes in heavily contaminated samples (105-106 CFU g-1) without noticeable modifications of the organoleptic properties of the cheese.  相似文献   

13.
This review concentrates on information concerning microbiological hazards possibly present in raw milk dairy products, in particular cheese, butter, cream and buttermilk. The main microbiological hazards of raw milk cheeses (especially soft and fresh cheeses) are linked to Listeria monocytogenes, verocytotoxin-producing Escherichia coli (VTEC), Staphylococcus aureus, Salmonella and Campylobacter. L. monocytogenes, VTEC and S. aureus have been identified as microbiological hazards in raw milk butter and cream albeit to a lesser extent because of a reduced growth potential compared with cheese. In endemic areas, raw milk dairy products may also be contaminated with Brucella spp., Mycobacterium bovis and the tick-borne encephalitis virus (TBEV). Potential risks due to Coxiella burnetii and Mycobacterium avium subsp. paratuberculosis (MAP) are discussed. Pasteurisation ensures inactivation of vegetative pathogenic microorganisms, which increases the safety of products made thereof compared with dairy products made from raw milk. Several control measures from farm to fork are discussed.  相似文献   

14.
The efficacy of the antimicrobial peptide cerein 8A to control the development of Listeria monocytogenes in milk and soft cheese was investigated. The addition of 160 AU ml(-1) cerein 8A to UHT milk resulted in a decrease of 3 log cycles in viable cells within the 14-day period at 4 degrees C. The viable counts of L. monocytogenes in pasteurized milk samples containing cerein 8A was lower than those observed in controls without bacteriocin. Addition of cerein 8A to Minas-type soft cheese caused a delay in the start of exponential growth phase, although similar counts were observed after day 6. When cerein 8A was used to control cheese surface contamination by L. monocytogenes, a decrease of 2 log cycles in viable counts of cerein-treated samples was observed during 30 days at 4 degrees C. This antimicrobial peptide shows potential use as a biopreservative for application in dairy products.  相似文献   

15.
The recent FDA affirmation of nisin, an antimicrobial peptide, as a GRAS (generally recognized as safe) additive in pasteurized cheese spreads has renewed interest in its potential application in US dairy products. Fluid milks were prepared with varying concentrations of milk fat (0 to 12.9%) and of nisin (0 to 50 U/ml). Biological activity assays using a sensitive indicator microorganism in a well diffusion system indicated that initial nisin activity (50 U/ml) decreased by about 33% when it was added to skim milk and by more than 88% when added to milk containing 12.9% fat. Nisin activity decreased by ca. 50% in milk containing 1.29% fat. Milks containing 0, 10, or 50 U/ml of nisin and varying fat percentages were challenged with approximately log10 7 to 7.5 cfu/ml of log phase Listeria monocytogenes Scott A or Jalisco. At 2 h after inoculation, the viable count of L. monocytogenes Scott A decreased to log10 .30 cfu/ml in skim milk with 50 U/ml of nisin, decreased to log10 2.90 cfu/ml in skim milk with 10 U/ml of nisin, and increased slightly (log10 7.8 cfu/ml) in skim milk without nisin. In half-and-half (12.9% milk fat), nisin was far less effective in inhibiting Listeria with populations decreasing to log10 6.57 cfu/ml for 10 U/ml of nisin and log10 5.87 cfu/ml for 50 U/ml. Similar results were obtained with L. monocytogenes Jalisco. The nonionic emulsifier, Tween 80, partially counteracted decreases of nisin activity in milks, whereas the anionic emulsifier, lecithin, had no effect. Addition of Tween 80 significantly increased the activity of nisin against L. monocytogenes in milk regardless of fat content.  相似文献   

16.
A case of listeriosis was associated with the consumption of a soft cheese produced in England. Goats cheese and other products from the same food manufacturer were examined for the presence of Listeria over the following 11 months. Listeria monocytogenes was isolated from 16 of 25 cheese samples on retail sale, 12 of 24 cheese samples obtained directly from the factory, and from shelving within the plant. Phage-typing of 68 isolates of L. monocytogenes from cheese samples and the factory showed that 66 (97%) were indistinguishable from the strain isolated from the patient's cerebrospinal fluid and stool. L. monocytogenes was not isolated from seven goats milk or two yoghurt samples. Listeria innocua was isolated from 10 cheese samples, two of which contained no other species of Listeria. Levels of L. monocytogenes shortly after production were low (<10/g), but were higher (105–107 cfu/g) in six of the 16 cheese samples obtained from retail outlets. Multiplication of L. monocytogenes was demonstrated in cheeses contaminated at the factory and held at 4°C in the laboratory.  相似文献   

17.
Latin-style fresh cheeses, which have been linked to at least 2 human listeriosis outbreaks in the United States, are considered to be high-risk foods for Listeria monocytogenes contamination. We evaluated L. monocytogenes contamination patterns in 3 Latin-style fresh-cheese processing plants to gain a better understanding of L. monocytogenes contamination sources in the manufacture of these cheeses. Over a 6-mo period, 246 environmental samples were collected and analyzed for L. monocytogenes using both the Food and Drug Administration (FDA) method and the Biosynth L. monocytogenes detection system (LMDS). Finished cheese samples from the same plants (n = 111) were also analyzed by the FDA method, which was modified to include L. monocytogenes plating medium (LMPM) and the L. monocytogenes confirmatory plating medium (LMCM) used in the LMDS method. Listeria monocytogenes was detected in 6.3% of cheese and 11.0% of environmental samples. Crates, drains, and floor samples showed the highest contamination rates, with 55.6, 30.0, and 20.6% L. monocytogenes positive samples, respectively. Finished products and food contact surfaces were positive in only one plant. The FDA method showed a higher sensitivity than the LMDS method for detection of L. monocytogenes from environmental samples. The addition of LMPM and LMCM media did not further enhance the performance of the FDA method for L. monocytogenes detection from finished products. Molecular subtyping (PCR-based allelic analysis of the virulence genes actA and hly and automated ribotyping) was used to track contamination patterns. Ribotype DUP-1044A, which had previously been linked to a 1998 multistate human listeriosis outbreak in the United States, was the most commonly identified subtype (20/36 isolates) and was isolated from 2 plants. This ribotype was persistent and widespread in one factory, where it was also responsible for the contamination of finished products. We hypothesize that this ribotype may represent a clonal group with a specific ability to persist in food processing environments. While previous listeriosis outbreaks were linked to Latin-style fresh cheeses made from unpasteurized milk, the presence of this organism in pasteurized cheese products illustrates that persistent environmental contamination also represents an important source of finished product contamination.  相似文献   

18.
Parmesan cheese was made from a mixture of pasteurized whole and skim milk that was inoculated to contain ca. 10(4) to 10(5) cells of Listeria monocytogenes/ml. Curd was cooked at 51 degrees C (124 degrees F) for ca. 45 min. During cheese making, maximum numbers of L. monocytogenes appeared just before cooking; at this point, the increase over initial numbers was a .61 to 1.0 order of magnitude. During cooking of curd, the average decrease in numbers of L. monocytogenes was a .22 order of magnitude. During cheese ripening, numbers of L. monocytogenes decreased almost linearly and faster than reported for other hard cheeses. Listeria monocytogenes strain California died faster than did strain V7. Listeria monocytogenes were not detected in cheese after 2 to 16 wk of ripening, depending on the strain of the pathogen and the lot of cheese. Parmesan cheese made in this study was not a favorable medium for survival of L. monocytogenes.  相似文献   

19.
Rindless Swiss cheese was made from a mixture of pasteurized whole and skim milk that was inoculated to contain 10(4) to 10(5) cfu of Listeria monocytogenes (strain Ohio, California, or V7)/ml. During clotting of milk, numbers of L. monocytogenes remained nearly unchanged. When the curd was heated gradually to attain the cooking temperature (50 degrees C), numbers of L. monocytogenes increased by approximately 40 to 45% over those in inoculated milk. Cooking curd at 50 degrees C (122 degrees F) for 30 to 40 min resulted in resilient curd having a pH of 6.40 to 6.45 and decreased L. monocytogenes by 48% compared with numbers of the pathogen in inoculated milk. After curd was pressed under whey, numbers of L. monocytogenes increased by approximately 52% over those in inoculated milk and reached their maxima at the end of this stage. A sharp decrease in numbers of L. monocytogenes occurred during brining of cheese blocks (7 degrees C for 30 h). The population of L. monocytogenes continued to decrease during cheese ripening. Average D values for strains California, Ohio, and V7 were 29.2, 24, and 22.5 d, respectively. Listeria was not detected (direct plating, and cold enrichment) after 80, 77, and 66 d of ripening of Swiss cheese made from milk inoculated with strains California, Ohio, and V7, respectively. Thus, Swiss cheese made in this study did not permit extended survival of L. monocytogenes.  相似文献   

20.
An outbreak of food-borne listeriosis due to cheese in Japan, during 2001   总被引:1,自引:0,他引:1  
Food-borne outbreaks caused by Listeria monocytogenes have been recognized in US and European countries. Only sporadic cases, of neonatal listeriosis, have been reported in Japan. Since L. monocytogenes has been often isolated from foods in Japan, food-borne outbreaks potentially could have occurred. In February 2001, L. monocytogenes serotype 1/2b was isolated from a washed-type cheese during routine Listeria monitoring of 123 domestic cheeses. Further samples from products and the environments at the plant that produced the contaminated cheese were examined for L. monocytogenes. L. monocytogenes serotype 1/2b was detected in 15 cheese samples, at most probable number that ranged from <30 to 4.6 x 10(9)/100 g, and in environmental samples. Studies with people who had consumed cheese from the plant revealed 86 persons who had been infected with L. monocytogenes. Thirty-eight of those people had developed clinical symptoms of gastroenteritis or the common cold type after the consumption of cheese. Isolates from those patients exhibited the same serotype, pathogenicity for mice and HeLa cells, DNA fingerprinting patterns and PCR amplification patterns. From the epidemiological and genetic evidence, it appeared that the outbreak was caused by cheese. This is the first documented incidence of food-borne listeriosis in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号