首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
煤岩轴向应力恒定卸围压条件下力学参数的研究   总被引:1,自引:0,他引:1  
分析了煤岩轴向应力恒定卸围压破坏时极限强度、峰值应变和破坏方式等力学参数,运用卸载破坏围压差的概念,反应不同初始卸载围压煤岩破坏的难易程度。通过对不同初始卸荷速率煤岩试件变形破坏力学参数的对比,研究开挖卸荷速率对地下工程的影响。  相似文献   

2.
刘双飞 《采矿技术》2022,22(1):109-112
为研究砂岩力学特性的速率效应,开展砂岩真三轴加卸载试验.试验结果表明:加、卸载速率对砂岩力学特性有明显影响,随着加载速率的增大,岩石弹性增强,三轴抗压强度增大,变形发育更充分,岩石破坏时围压水平提高,破坏更加迅速,所需时间减少,破坏时应变增大;而随着卸荷速率的增大,岩石的弹性承载能力减弱,强度降低,破坏时卸载方向变形增大,岩石破坏时围压水平降低,但卸载速率越小,岩石最终破坏时裂纹发育越充分;加卸载过程中,岩石变形模量逐渐劣化损伤,加载速率越大,卸荷速率越小,变形模量的劣化损伤变慢.  相似文献   

3.
为探究不同围压卸载速率下岩石的声发射及损伤特征,对煤岩进行了卸载速率分别为0.02,0.05,0.1,0.2 MPa/s的岩石AE测试及变形损伤研究。结果表明:卸载速率越大,煤岩的损伤发展越充分、越缓慢,破坏时对应的轴向应变和围压值越低;卸载速率较高时,声发射呈明显的"两阶段"特征,存在明显的声发射分界点,而且与体变转折点相对应,而卸载速率较小时,声发射整体呈"缓变型",突变点不清晰;卸载速率与损伤值呈良好的幂函数关系;基于热力学原理得到的卸荷速率-损伤模型能较为准确预测各卸荷速率下煤岩的损伤演化情况。  相似文献   

4.
为探讨在增轴压卸围压的应力路径下不同卸荷速率对甘肃北山花岗岩力学性质的影响,对北山花岗岩进行了不同速率、不同围压条件下的卸荷试验,并与循环加卸载试验强度方面的数据对比分析,研究花岗岩的强度变形特征和破坏特点。研究结果表明:1围压效应明显,峰值强度随实时围压升高而增强;卸荷试验峰值强度包络线在循环加、卸载试验峰值强度包络线上方,且随着卸荷试验速率的升高,岩样峰值承载能力增强。2随着卸荷速率的增加,黏聚力增大,但内摩擦角变化较小且无明显规律;相比循环加卸载试验,卸荷试验的黏聚力降低了8%~20%,内摩擦角提高了9%左右。3随着围压的增加,卸荷试验峰值点至峰后应力跌落点的横向应变增量先减小后增加;不同围压下的卸荷起点至卸荷峰值点的横向应变增量在0.5~2.0 MPa/min卸荷速率区间内有相同的增减趋势。4随着卸荷试验速率的增加,岩样破裂面贯通程度增加;随着围压的升高,主破裂面破裂角增大,且破裂面更加平直。  相似文献   

5.
深部煤炭开采过程中,由于工程扰动,地应力发生复杂变化,由此导致煤岩力学性质、渗透率特性等随之改变。基于此,进行了煤样在轴压一定,不同卸围压速率、不同瓦斯压力条件下的流固耦合试验。研究了煤样在不同应力卸围压速率、瓦斯压力作用下的力学和渗流特性;分析了三轴卸围压和不同瓦斯压力条件下原煤的变形、强度、力学参数变化规律;揭示瓦斯的分阶段演化特性。结果表明:随着围压卸载速率、瓦斯压力的不断增加,煤样破坏时的变形、塑形平台逐渐增强;煤样的变形模量、侧向变形系数及破坏时的有效围压均随着卸围压速率、瓦斯压力的增加而逐渐降低;轴压加载阶段,由于原生裂隙被压密,渗透率逐渐降低,在围压卸载阶段,由围压卸载引起的原生孔隙裂隙扩张、高偏应力差引起的煤样新生裂隙导致裂隙总量增加,渗透率逐渐增大。  相似文献   

6.
为探索轴压加载速率和围压卸载速率对采动含瓦斯煤损伤-渗透时效特性的影响规律,利用煤岩吸附-渗流-力学耦合特性测定仪开展了不同加卸载速率条件下煤体损伤-渗透试验。研究结果表明,轴压加载速率或围压卸载速率越高,试样损伤破坏的时间响应越快,峰值强度呈小幅度降低,即加卸载速率显著影响着试样损伤破坏的时效特性,但对试样抵抗破坏的能力影响较小;加卸载速率较低时试样呈相对稳态损伤,加卸载速率较高时试样损伤程度较高且呈非稳态损伤特征,易发生突崩式破坏;加卸载速率越高,则试样渗透率的时间响应越快,增幅越大,恒轴压卸围压试样的峰后渗透率可达到原始渗透率的163.0%~206.3%;围压卸载对采动煤体损伤-渗透的影响作用远大于轴压加载,因此在工程实践中需适当控制煤层开采速度,以有效避免煤岩瓦斯动力灾害。  相似文献   

7.
为研究深部煤层底板卸荷劣化破坏机理,开展了轴压不变卸围压、加轴压卸围压、卸轴压卸围压不同加卸载应力路径下的假三轴力学试验,分析并拟合了不同应力路径下岩石弹性模量、广义泊松比与围压的变化关系;构建了岩石断裂力学模型,分析了不同加卸载路径下,分支裂纹端部应力集中程度;从偏应力、能量、声发射事件等方面剖析了卸荷过程中岩石力学参数劣化机制。研究表明:(1)不同轴压加载方式下岩样的弹性模量劣化程度和泊松比变化幅度依次为加轴压>轴压保持不变>卸轴压;相同轴压不同围压卸载速率下,岩样的弹性模量劣化程度和泊松比变化幅度与卸荷速率呈正相关变化。(2)围压卸荷过程中,轴向加载或保持不变的应力路径相比于轴向卸载的应力路径,岩石积聚的能量增长幅度较大;在围压卸载至一定程度时,内部闭合的微裂隙和原生裂隙重新被打开,用于裂纹扩展的能量迅速增加,泊松比和弹性模量变化比例明显增大,声发射事件振铃数呈现出非线性增长的特点。(3)不同加卸载路径下,偏应力是诱发岩石失稳破坏的根本原因,偏应力增长越快,岩石弹性模量劣化程度和泊松比变化程度越明显。工作面附近处于压剪破坏区偏应力相对较大,岩体劣化程度相对较为严重,这...  相似文献   

8.
不同应力路径下岩石峰前卸荷破坏能量特征分析   总被引:4,自引:0,他引:4  
基于岩石能量交换原理和3种不同卸荷路径下试验,研究了卸荷条件下岩石轴向吸收应变能、环向扩容消耗应变能、弹性应变能以及耗散能的演化特征与演化速率。研究结果表明:3个方案中,岩石轴向吸收的应变能主要转化为环向扩容消耗应变能,扩容程度方案III方案I方案II,而转化为耗散能较少,只有在临近破坏时耗散能才明显增加。初始围压对轴向应变能、环向扩容消耗应变能及弹性应变能的影响程度明显大于卸载路径,且都随着初始围压的增大呈近似线性增加。同一初始围压下,岩样临近破坏时存储的弹性应变能大小方案II方案I方案III,岩石发生破坏时,方案II发生岩爆的可能性最大。卸载路径和初始围压对耗散能有显著的影响。3个方案中应变能的演化速率均随着初始围压的增大而增加,初始围压对应变能演化速率的影响与卸载路径有关。  相似文献   

9.
考虑不同应力路径下的卸荷对岩石强度、变形模量等参数的影响,以铜坑矿区小扁豆状灰岩为研究对象,结合现场工程地质条件,开展了岩石卸荷力学试验,试验研究发现:卸荷岩石的破坏主要表现为脆性破坏,峰前卸围压的破坏程度大于峰后卸围压的破坏程度,峰后卸围压的破坏程度大于常规三轴的破坏程度,峰前卸围压破坏具有突发性,岩样由张性破坏过渡到张剪性破坏;在相同初始应力下,岩石卸载破坏所需应力比常规三轴压缩破坏对应的应力小,卸荷破坏时的变形比连续加载时大;衍生的卸荷裂隙随机发生,方向大体平行于X型共轭剪节理,对洞室开挖临空面定向破坏有判定性,由此现象引发片帮、冒顶等隐患需及时采取工程措施治理。  相似文献   

10.
为研究深部煤炭回采过程中底板岩体能量变化特征及卸荷劣化机制,开展了不同围压卸载速率下岩石力学试验,综合理论分析和实验室试验分析了不同卸载阶段的岩石损伤断裂能量、弹性模量的变化特征。研究表明:卸围压过程中的岩石变形破坏可划分为围压卸载起始点至失稳破坏、失稳破坏到加速破坏、进入加速破坏3个阶段。在围压卸载起始点至失稳破坏阶段和失稳破坏到加速破坏阶段,相同轴压下,不同围压卸载速率对岩石弹性模量劣化程度产生的影响较小;在围压卸载起始点至失稳破坏阶段,损伤断裂能量消耗较少,但岩石弹性模量劣化程度较为明显;在失稳破坏到加速破坏阶段,弹性模量的劣化程度相比于围压卸载起始点至失稳破坏阶段趋缓,但损伤断裂能量消耗呈现增长变化趋势。在岩石进入加速破坏阶段,卸载速率越快,岩石卸围压过程中释放的损伤断裂能量越大,越易形成宏观贯穿式裂纹,煤层底板突水危险性随之增大。  相似文献   

11.
瓦斯压力对卸荷原煤力学及渗透特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
运用自主研制的含瓦斯煤热流固耦合三轴伺服渗流试验装置,以原煤煤样作为研究对象,在不同瓦斯压力条件下对含瓦斯煤进行了固定轴向应力的卸围压瓦斯渗流试验,研究卸围压过程中瓦斯压力对煤体的力学及渗透特性的影响。研究结果表明:开始卸围压后,煤体出现明显的扩容现象,径向发生明显膨胀应变,煤体中的渗流通道张开,煤体中瓦斯的渗流速率随之加快;随着瓦斯压力的升高,解除单位围压后煤样产生的变形变大,渗流速率升高的速率也随之增大;瓦斯压力越高,煤样从开始卸围压起至破坏的时间越短,即煤体强度越低;在卸围压初始阶段,煤样变形模量变化不大,在进入屈服阶段和失稳破坏阶段后,煤样的变形模量减小的速率开始明显加快。从煤样开始卸围压至破坏之前,煤样的变形模量下降了3.71%~7.45%;煤样的泊松比逐渐增大,围压与泊松比的对应具有较为明显的幂函数关系。  相似文献   

12.
含瓦斯煤岩卸围压变形特征及瓦斯渗流试验   总被引:5,自引:0,他引:5       下载免费PDF全文
运用自制的含瓦斯煤热流固耦合三轴伺服渗流实验装置,进行了含瓦斯煤岩卸围压瓦斯渗流试验,研究其卸围压过程中的变形和瓦斯渗流特性。研究结果表明,卸围压试验煤样破坏形式是以剪切破坏为主的张剪复合破坏。卸围压过程中,含瓦斯煤岩围压-应变曲线可以分为3个阶段:屈服前阶段、屈服后阶段、破坏失稳阶段。渗透率-应变曲线与围压-应变曲线呈现出明显的对应关系,表明围压对煤岩的变形和渗透率有重大影响,煤岩渗透率的变化与煤岩的变形损伤演化过程密切相关。卸围压后,含瓦斯煤岩的泊松比立即转为向变大的方向发展,变形模量立即转为向变小的方向发展,并在卸围压过程中发展的趋势保持不变。  相似文献   

13.
吕有厂  秦虎 《煤炭学报》2012,37(9):1505-1510
利用自主研制的含瓦斯煤岩热流固耦合三轴伺服渗流装置对含瓦斯煤岩进行了三轴卸围压试验,基于实验结果,研究了含瓦斯煤岩卸围压失稳破坏过程中的力学特性及其能量耗散规律。结果表明:在初始瓦斯压力和围压相同的情况下,卸围压速率增大加快了含瓦斯煤岩失稳破坏的进程,定义的卸围压效应系数反映了三轴卸围压实验中卸围压速率对含瓦斯煤岩失稳破坏难易程度,且卸围压效应系数与卸围压速率之间存在幂函数的关系;在瓦斯压力和应力差相同的情况下,不同卸围压速率下含瓦斯煤岩的轴向应变、侧向应变和体积应变的变化规律具有较好的一致性,卸围压速率越大,含瓦斯煤岩的轴向应变、侧向应变和体积应变越小;卸围压过程中能量耗散与卸围压速率有关,且含瓦斯煤岩的能量耗散随着卸围压速率的增大而减小。  相似文献   

14.
张军伟  姜德义  赵云峰  陈结  李林 《煤炭学报》2015,40(12):2820-2828
采用恒定轴压以不同卸荷速率分阶段卸围压的方式,分别对初始围压不同的三组煤样进行卸荷试验,然后对比分析了构造煤常规三轴加载和分阶段卸荷试验的应力-应变曲线特征,并从能量演化的角度分析了分阶段卸荷过程中煤样的能量变化规律。试验结果表明,构造煤分阶段卸围压试验的力学强度和变形能力明显小于常规三轴加载试验。分阶段卸荷过程中构造煤的偏应力和应变变化均呈现明显的阶梯状。在卸荷段,围压对试件的变形起到了限制作用,围压越大,应变增量越小、卸荷段越多;卸荷速率通过改变围压卸荷量影响应变变化,但相同卸荷速率时,围压越大应变增量越小;在恒压段,试件的应变变化呈现蠕变特征,通过数据拟合得到了其叠加开尔文体的蠕变方程。分阶段卸围压过程中,围压卸荷诱发弹性应变能持续释放,煤样吸收的总能量不断增加,其转化的耗散能也不断增大;围压卸荷速率越大,弹性应变能释放越快,耗散能变化率也越大,煤样强度衰减也更快;并且相同卸荷速率条件下,围压越小弹性应变能变化率也较小。  相似文献   

15.
不同加载速率下煤岩采动力学响应及破坏机制   总被引:3,自引:0,他引:3       下载免费PDF全文
研究煤岩在不同加载模式与不同加载速率下采动力学响应及破坏机制对认清煤矿动力灾害本质具有指导意义。基于塔山煤样,先后设计与开展了单轴拉伸与压缩、常规三轴及采动力学试验。获得了不同加载模式下煤样的力学特征参量和变形破坏特性。进一步对比分析了常规三轴试验与采动力学试验煤样变形特征的差异。得到煤样破坏前吸收能量密度随着轴向加载速率的关系,揭示了应力偏量是造成试样破坏强度和吸收能量密度提高的原因,是破坏产生的本质原因,但其受控于围压的临界值,及煤样损伤发生具有的时间效应。建立了采动力学条件下考虑加卸载过程中材料损伤的煤岩黏弹性模型屈服准则,包含有效体积应力的影响、应力差的影响、轴向加载速率的影响及围压卸载速率的影响,新的黏弹性模型屈服准则可以很好地解释加卸载速率引起的材料屈服强度变化。  相似文献   

16.
深部煤层开采过程中,多重因素影响着煤体损伤-渗透特性.为揭示采动煤体损伤-渗透特性演化规律,开展了不同工程条件代表的恒围压加轴压(路径1)、恒轴压卸围压(路径2)和同时加轴压卸围压(路径3)3种力学路径下煤体损伤-渗透实验,分析加卸载方式、轴压加载速率、围压卸荷速率以及围压等因素对型煤煤体损伤-渗透特性的影响规律.结果...  相似文献   

17.
分阶段卸载条件下突出煤变形特征与渗流特性   总被引:2,自引:0,他引:2       下载免费PDF全文
袁曦  张军伟 《煤炭学报》2017,42(6):1451-1457
为研究下保护层开采过程中采动应力作用下含瓦斯突出煤的渗流特性,利用自制的三轴渗流试验机,进行了恒定轴压卸围压、增大轴压卸围压、轴压围压同时卸载等3种不同加卸载条件下的分阶段卸围压煤样瓦斯渗流试验。试验结果表明:试验中煤样的变形具有明显的阶梯状特性,煤样未破坏时,应变增量随着围压卸载速率的增大而增大。随着围压的卸载,恒定轴压卸围压组和增大轴压卸围压组煤样的偏应力不断增大,其渗透率则呈现出先减小后增大的趋势,而轴压和围压同时卸载组煤样的渗透率则随着围压的卸载,呈现出不断增大的趋势。煤样体积应变变化量较大时,渗透率变化量也大。从能量的角度分析渗透率的变化,发现煤样渗透率均随能量耗散率的增大而呈指数增大。  相似文献   

18.
蒋长宝  黄滚  黄启翔 《煤炭学报》2011,36(12):2039-2042
以重庆松藻煤电有限责任公司的典型煤与瓦斯突出矿井--打通一矿7号煤层为研究对象,利用自行研制的“含瓦斯煤热流固耦合三轴伺服渗流试验装置”,进行了不同初始围压和不同瓦斯压力组合条件下,含瓦斯煤多级式卸围压变形破坏及渗透率演化规律实验研究。研究结果表明:开始卸围压后,煤岩并不是立即被破坏失稳,而是维持在σu1一段时间,经历n级卸围压作用后才会失稳;在煤样失稳前,每一级卸围压过程中煤样的变形和渗透率变化速度都是不一样的,均呈加速增大的趋势;在每一级围压恒定阶段,随着围压的降低,煤岩的蠕变速度和渗透率也均是加速增大的;卸围压阶段比围压恒定阶段变形和渗透率增大速度快得多;无论是卸围压过程还是恒定围压阶段,围压降低引起的横向变形的变化速度均大于轴向变形的变化速度。  相似文献   

19.
深部开采的强扰动附加属性导致底板煤岩破坏加剧,易沟通底板承压水导升带而诱发突水灾害,故研究砌体梁失稳扰动底板破坏的力学行为可为实现矿山岩层控制提供重要的理论基础。根据弹塑性力学理论分析了深部开采砌体梁失稳扰动底板破坏的动载源特征,基于压力拱及损伤力学理论研究了砌体梁失稳扰动底板压剪破坏和卸荷破坏的力学行为,应用离散元软件计算分析了不同采深下砌体梁失稳扰动底板的应力变化及变形破坏行为,结合采动力学全过程应力-应变曲线获得了深部开采底板强扰动破坏的分区特征,并应用深部开采微震监测数据进行了验证。结果表明:砌体梁失稳后,梁端煤壁端部及触矸区域底板应力增高并形成了塑性屈服区和触矸破坏区,两者之间则形成了压力拱形式的卸荷破坏区;随采深增加,底板塑性屈服区和触矸破坏区的压应力增量及卸荷破坏区的卸荷反弹力不断增大,并使得底板岩体最大变形量在采深700 m以浅时近似线性增加,而采深700 m以深的深部开采却表现为非线性突变增长;深部开采高围压造成底板压应力峰值及卸荷反弹力非线性增加,促使了扰动岩体由浅部脆性向深部延性的转变,并导致其强扰动破坏的分区范围扩大,变形破坏深度增加,深部开采底板的非线性强扰动破坏行为在底板浅部最突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号