首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
In the framework of the B1 Consortium of the EUROFAN-1 project, we set up a series of simple phenotypic tests that can be performed on a large number of strains at a time. This methodological approach was intended to help assign functions of putative genes coding for unknown proteins to several specific aspects of cell biology. The tests were chosen to study phenotypes which should be affected by numerous genes. In this report, we examined the sensitivity/resistance or the adaptation of the cell to physical or chemical stresses (thermotolerance, osmotolerance and ethanol sensitivity), the effects of the alteration of the level of protein phosphorylation (sensitivity or resistance to compounds affecting the activity of protein kinases or phosphatases) and the effects of compounds interfering with synthesis of nucleic acids or proteins. Deletions in 66 genes of unknown function have been tested in 21 different conditions. In many deletant strains, phenotypes were observed and, for the most promising candidates, tetrad analysis was performed in order to verify co-segregation of the deletion marker with the phenotype.  相似文献   

2.
In 1993, a pilot project for the functional analysis of newly discovered open reading frames, presumably coding for proteins, from yeast chromosome III was launched by the European Community. In the frame of this programme, we have developed a large-scale screening for the identification of gene/protein functions via systematic phenotypic analysis. To this end, some 80 haploid mutant yeast strains were constructed, each carrying a targeted deletion of a single gene obtained by HIS3 or TRP1 transplacement in the W303 background and a panel of some 100 growth conditions was established, ranging from growth substrates, stress to, predominantly, specific inhibitors and drugs acting on various cellular processes. Furthermore, co-segregation of the targeted deletion and the observed phenotype(s) in meiotic products has been verified. The experimental procedure, using microtiter plates for phenotypic analysis of yeast mutants, can be applied on a large scale, either on solid or in liquid media. Since the minimal working unit of one 96-well microtiter plate allows the simultaneous analysis of at least 60 mutant strains, hundreds of strains can be handled in parallel. The high number of monotropic and pleiotropic phenotypes (62%) obtained, together with the acquired practical experience, have shown this approach to be simple, inexpensive and reproducible. It provides a useful tool for the yeast community for the systematic search of biochemical and physiological functions of unknown genes accounting for about a half of the 6000 genes of the complete yeast genome. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Within the frame of the EUROFAN project, aimed at the functional analysis of the novel ORFs revealed by the systematic sequencing of the Saccharomyces cerevisiae genome, we have inactivated six ORFs encoding putative proteins with unknown function in the two S. cerevisiae strains FY1679 and W303-1B. Five ORFs are located on chromosome VII (YGR250c, YGR251w, YGR260w, YGR262c, YGR263c) and one on chromosome XIV (YNL234w). The genes have been inactivated in the FY1679 strain by a strategy that makes use of deletion cassettes containing the kanMX4 module, which confers resistance to geneticin to yeast cells, and short flanking regions homologous to the target locus (SFH). Tetrad dissection of heterozygous mutants and basic phenotypic analysis of the spores revealed that ORF YGR251w is an essential gene, while the disruption of YGR262c causes a severe slow-growth phenotype. Deletion of the remaining ORFs did not give rise to a detectable phenotype in the mutant strains. For each ORF we have cloned, in the pUG7 plasmid, a replacement cassette that possesses long flanking regions homologous to the target locus (LFH) and, in the pRS416 plasmid, the cognate wild-type gene. The LFH replacement cassettes were used to inactivate the respective genes in the W303-1B strain. This work has been performed in the framework of the B0 Consortium of the EUROFAN I project.  相似文献   

4.
In the field of metabolic engineering and functional genomics, methods for analysis of metabolic fluxes in the cell are attractive as they give an overview of the phenotypic response of the cells at the level of the active metabolic network. This is unlike several other high-throughput experimental techniques, which do not provide information about the integrated response a specific genetic modification has on the cellular function. In this study we have performed phenotypic characterization of several mutants of the yeast Saccharomyces cerevisiae through the use of experiments with (13)C-labelled glucose. Through GC-MS analysis of the (13)C incorporated into the amino acids of cellular proteins, it was possible to obtain quantitative information on the function of the central carbon metabolism in the different mutants. Traditionally, such labelling data have been used to quantify metabolic fluxes through the use of a suitable mathematical model, but here we show that the raw labelling data may also be used directly for phenotypic characterization of different mutant strains. Different glucose derepressed strains investigated employed are the disruption mutants reg1, hxk2, grr1, mig1 and mig1mig2 and the reference strain CEN.PK113-7D. Principal components analysis of the summed fractional labelling data show that deleting the genes HXK2 and GRR1 results in similar phenotype at the fluxome level, with a partial alleviation of glucose repression on the respiratory metabolism. Furthermore, deletion of the genes MIG1, MIG1/MIG2 and REG1 did not result in a significant change in the phenotype at the fluxome level.  相似文献   

5.
Lipids are essential components of all living cells because they are obligate components of biological membranes, and serve as energy reserves and second messengers. Many but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of the yeast Saccharomyces cerevisiae have been cloned and gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes or the turnover and degradation of complex lipids. To obtain more insight into lipid metabolism, regulation of lipid biosynthesis and the role of lipids in organellar membranes, a group of five European laboratories established methods suitable to screen for novel genes of the yeast Saccharomyces cerevisiae involved in these processes. These investigations were performed within EUROFAN (European Function Analysis Network), a European initiative to identify the functions of unassigned open reading frames that had been detected during the Yeast Genome Sequencing Project. First, the methods required for the complete lipid analysis of yeast cells based on chromatographic techniques were established and standardized. The reliability of these methods was demonstrated using tester strains with established defects in lipid metabolism. During these investigations it was demonstrated that different wild‐type strains, among them FY1679, CEN.PK2‐1C and W303, exhibit marked differences in lipid content and lipid composition. Second, several candidate genes which were assumed to encode proteins involved in lipid metabolism were selected, based on their homology to genes of known function. Finally, lipid composition of mutant strains deleted of the respective open reading frames was determined. For some genes we found evidence suggesting a possible role in lipid metabolism. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
We have isolated mutants responsible for a super-secretion phenotype in Kluyveromyces lactis using the gene coding for a Bacillus amyloliquefaciens alpha-amylase as a marker for secretion. These mutations defined two groups, dominant and recessive. The recessive mutant strain, which secreted the heterologous protein in five-fold excess compared to the wild-type strain, was used for the cloning of genes, restraining the super-secreting phenotype. In screening for genes affecting super-secreting phenotype, we found that multiple copies of 10 different independently isolated DNA sequences suppressed the super-secreting phenotype. The first among the genes characterized, named KlSEL1 ('secretion lowering') showed homology to Saccharomyces cerevisiae ORF YML013w. The KlSEL1 gene is predicted to encode a polypeptide of 620 amino acid residues containing a putative transmembrane domain and UBX domain, characteristic for the ubiquitin-regulatory proteins. We demonstrated that the disruption of the SEL1 orthologues in K. lactis and S. cerevisiae conferred the super-secreting phenotype. SEL1 isolated from S. cerevisiae suppressed the super-secretion phenotype in K. lactis klsel1 strain, likewise homologous KlSEL1. No other phenotypic features for strains lacking the SEL1 gene were noticed except for the S. cerevisiae mutant growth being notably slower than in a wt strain. No growth changes were observed in the K. lactis klsel1 mutant. The set of genes (suppressors of over-secreting phenotype) could be attractive for further analysis of gene functions, super-secreting mechanisms and construction of new strains. This collection could be useful for the expedient construction of reduced yeast genomes, optimized for heterologous protein secretion.  相似文献   

7.
In a systematic approach to study genes that are related to nucleocytoplasmic trafficking in the fission yeast Schizosaccharomyces pombe, the open reading frames (ORFs) of 26 putative nucleoporins and transport factors were deleted. Here we report the initial characterization of these deletion mutants. Of the 26 putative genes deleted, 14 were found to be essential for viability. Null mutations of essential genes resulted in failure to either complete one round or to sustain cell division. Four of the 14 essential genes, SPBC582.11c, SPBC17G9.04c, SPBC3B9.16c and SPCC162.08c, encode putative nucleoporins and a myosin-like protein with homologues NUP84, NUP85, NUP120 and MLP1, respectively, that are not required for viability in Saccharomyces cerevisiae, suggesting that their gene products perform critical functions in Sz. pombe. On the basis of combined drug sensitivity assays and genetic analysis we have identified five non-essential null mutants that were hypersensitive to the microtubule depolymerizing drug thiabendazole (TBZ) and exhibited a cut phenotype upon TBZ treatment, suggesting possible involvement in microtubule function. Three of the corresponding ORFs, SPCC18B5.07c, nup40 and SPAC1805.04, encode putative nucleoporins with low similarity to the S. cerevisiae nucleoporins NUP2p, NUP53p and NUP133p, respectively. Further genetic analysis revealed that one of the nucleoporin genes, nup40, and another gene, SPCC1322.06, encoding a putative importin-beta/Cse1p superfamily protein may have a spindle checkpoint function.  相似文献   

8.
We describe the disruption and basic phenotypic analysis of six open reading frames (ORFs) of unknown function located in the left arm of Saccharomyces cerevisiae chromosome VII, namely YGL133w, YGL134w, YGL136c, YGL138c, YGL142c and YGL144c. Disruptions were made using the short flanking homology PCR replacement strategy in the FY1679 and CEN.PK2 diploid strains. Sporulation and tetrad analysis of the heterozygous deletants was performed, as well as phenotypic analysis of the corresponding deleted haploid strains. No obvious phenotypes could be attributed to the strains deleted in any of the genes YGL134w, YGL138c and YGL144c under the conditions tested. YGL142c was shown to be an essential gene. Segregants bearing a deletion in YGL136c grew slowly in complete glycerol medium at 37 degrees C. Cells deleted in YGL133w showed abnormal morphology and reduced mating efficiency, but these phenotypes were observed only when the YGL133w disruption was in a MATalpha background. Ygl133 protein was found to localize to the nucleus.  相似文献   

9.
The post-genome sequencing era of Saccharomyces cerevisiae is defined by the analysis of newly discovered open reading frames of unknown function. In this report, we describe a genetic method for the rapid identification and characterisation of genes involved in a given phenotype. This approach is based on the ability of overexpressed genomic DNA fragments to cure an induced phenotype in yeast. To validate this concept, yeast cells carrying a yeast DNA library present on multicopy plasmid vectors were screened for resistance to the antifungal drug ketoconazole. Among 1·2 million colonies 13 clones tested positive, including those expressing the lanosterol C-14 demethylase, known to be a cellular target for azole drugs, and the cytochrome-c oxidase of mitochondria, regulating the respiratory chain electron transport. Several other resistant clones were identified, which code for yeast proteins of so far unknown function. These genes may represent potential candidates for antifungal drug effects. Together with the availability of the entire yeast genome sequence, the described genetic screening method is a powerful tool for the effective functional analysis of yeast genes. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
The yeast Saccharomyces cerevisiae is a powerful experimental system to study biochemical, cell biological and molecular biological aspects of lipid synthesis. Most but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of this unicellular eukaryote have been cloned, and many gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes, turnover and degradation of complex lipids, regulation of lipid biosynthesis, and linkage of lipid metabolism to other cellular processes. Here we summarize current knowledge about lipid biosynthetic pathways in S. cerevisiae and describe the characteristic features of the gene products involved. We focus on recent discoveries in these fields and address questions on the regulation of lipid synthesis, subcellular localization of lipid biosynthetic steps, cross-talk between organelles during lipid synthesis and subcellular distribution of lipids. Finally, we discuss distinct functions of certain key lipids and their possible roles in cellular processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
The naturally occurring polyamines putrescine, spermidine or spermine are ubiquitous in all cells. Although polyamines have prominent regulatory roles in cell division and growth, precise molecular and cellular functions are not well‐established in vivo. In this work we have performed microarray experiments with a spermidine synthase, spermine oxidase mutant (Δspe3 Δfms1) strain to investigate the responsiveness of yeast genes to supplementation with spermidine or spermine. Expression analysis identified genes responsive to the addition of either excess spermidine (10?5 M ) or spermine (10?5 M ) compared to a control culture containing 10?8 M spermidine. 247 genes were upregulated > two‐fold and 11 genes were upregulated >10‐fold after spermidine addition. Functional categorization of the genes showed induction of transport‐related genes and genes involved in methionine, arginine, lysine, NAD and biotin biosynthesis. 268 genes were downregulated more than two‐fold, and six genes were downregulated > eight‐fold after spermidine addition. A majority of the downregulated genes are involved in nucleic acid metabolism and various stress responses. In contrast, only a few genes (18) were significantly responsive to spermine. Thus, results from global gene expression profiling demonstrate a more major role for spermidine in modulating gene expression in yeast than spermine. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
14.
15.
16.
In the context of the EUROFAN programme, we report the deletion and functional analysis of six open reading frames (ORFs) on the right arm of chromosome XII of Saccharomyces cerevisiae. Using a PCR-based gene replacement strategy, we have systematically deleted individual ORFs and subjected the heterozygous diploids and haploid knockout strains to basic genetic and phenotypic characterization. Two ORFs, YLR127c and YLR129w, are essential for viability, whereas no growth phenotype could be detected following deletion of YLR124w, YLR125w, YLR126c or YLR128w. For each of the individual ORFs, a kanMX4 replacement cassette and the corresponding cognate wild-type gene were cloned into appropriate plasmids.  相似文献   

17.
The Saccharomyces cerevisiae gene YOL151W/GRE2 is widely used as a model gene in studies on yeast regulatory responses to osmotic and oxidative stress. Nevertheless, information concerning the physiological role of this enzyme, a distant homologue of mammalian 3-beta-hydroxysteroid dehydrogenases, is scarce. Combining quantitative phenotypic profiling and protein expression analysis studies, we here report the involvement of yeast Gre2p in ergosterol metabolism. Growth was significantly and exclusively reduced in gre2Delta strains subjected to environmental stress straining the cell membrane. Furthermore, whereas no compensatory mechanisms were activated due to loss of Gre2p during growth in favourable conditions (synthetic defined media, no stress), a striking and highly specific induction of the ergosterol biosynthesis pathway, represented by the enzymes Erg10p, Erg19p and Erg6p, was observed in gre2Delta during growth in a stress condition in which lack of Gre2p significantly affects growth. Involvement of Gre2p in ergosterol metabolism was confirmed by application of an array of selective inhibitors of lipid biosynthesis, as gre2Delta displayed vastly impaired tolerance exclusively to agents targeting the ergosterol biosynthesis. The approach outlined here, combining broad-spectrum phenotypic profiling, expression analysis during conditions reducing the growth of the mutant and functional confirmation by application of highly selective inhibitors, may prove a valuable tool in gene functional analysis.  相似文献   

18.
19.
We quantified the growth behaviour of all available single-gene deletion and overexpression strains of budding yeast. Genome-wide analyses enabled the extraction of the genes and identification of the functional categories for which genetic perturbation caused the change of growth behaviour. Statistical analyses revealed defective growth for 646 deletion and 1302 overexpression strains. We classified these deleted and overexpressed genes into known functional categories, and identified several functional categories having fragility and robustness for cellular growth. We also screened the deletion and overexpression strains that exhibited a significantly higher growth rate than the strain without genetic perturbation, and found that three deletion and two overexpression strains were high-growth strains. The genes and functional categories identified in the analysis might provide useful information on designing industrially useful yeast strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号