首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
薄壁箱梁剪滞效应的能量变分法   总被引:15,自引:1,他引:14  
吴幼明  罗旗帜  岳珠峰 《工程力学》2003,20(4):161-165,160
考虑了三个不同的剪滞纵向位移差函数以反映薄壁箱梁不同宽度翼板的剪滞变化幅度,提出了一种能对工程中常用的变高度梯形截面箱梁剪力滞及剪切变形效应进行分析的方法。应用能量变分原理,导出了箱梁受横向荷载作用下的剪滞控制微分方程和边界条件,获得相应的闭合解,并探讨了不同纵向位移差函数对剪力滞的影响。最后通过高阶有限条法计算验证了本文方法的正确性。所得的公式比以往剪滞理论有了发展,因此更具有一般性。  相似文献   

2.
The problem of unsteady compressible fluid flow in an enclosure induced by thermoacoustic waves is studied numerically. Full compressible set of Navier–Stokes equations are considered and numerically solved by boundary-domain integral equations approach coupled with wavelet compression and domain decomposition to achieve numerical efficiency. The thermal energy equation is written in its most general form including the Rayleigh and reversible expansion rate terms. Both, the classical Fourier heat flux model and wave heat conduction model are investigated.The velocity–vorticity formulation of the governing Navier–Stokes equations is employed, while the pressure field is evaluated from the corresponding pressure Poisson equation. Material properties are taken to be for the perfect gas, and assumed to be pressure and temperature dependent.  相似文献   

3.
This paper presents an exact symplectic approach for two dimensional isotropic viscoelastic solids subjected to external force and temperature boundary conditions. With the use of the state space method and the Laplace transform, all general solutions of the governing equations are obtained analytically. By applying the inverse integral transform, the time domain adjoint symplectic relationships between the general solutions are established. Therefore, the problems of the particular solution and the boundary conditions can be analysed either in the Laplace domain or directly in the time domain. As its applications, the boundary condition problems are discussed in the numerical calculations. The results show that, due to the displacement constraints and the temperature influence, local effects are distinct near the boundary, and the effects decay rapidly with the distance from the boundary.  相似文献   

4.
5.
An efficient meshless formulation is presented for large deflection of thin plates with immovable edges. In this method, a fifth-order polynomial radial basis function (RBF) is used to approximate the solution variables. The governing equations are formulated in terms of the three displacement components u, v and w. The solution is obtained by satisfying three coupled partial differential equations and their boundary conditions inside the domain and over the boundary of the plate, respectively. The collocation procedure produces a system of coupled non-linear algebraic equations, which are solved using an incremental-iterative procedure. The numerical efficiency of the proposed method is illustrated through numerical examples.  相似文献   

6.
Transfer matrix solutions are presented in this paper to study the axisymmetric and non-axisymmetric consolidation of a multilayered soil system under an arbitrary loading. Starting with the governing equations for consolidation problems of saturated soils, the relationship of displacements, stresses, excess pore water pressure, and flux between the points at the depth z, and on the ground surface (z = 0) is established in a transformed domain by introducing the displacement functions and using the integral transform technique. Then the transfer matrix method is used with the boundary conditions to obtain the analytical solutions in the transformed domain for the multilayered soil system. Numerical inversion of the integral transform of these analytical solutions results in the solutions for the actual problems. The numerical results for axisymmetric and non-axisymmetric Biot’s consolidation problems of a single layer and a multi-layered soil system are obtained and compared with existing results by others.  相似文献   

7.
In this paper, a solution procedure for plane piezoelectricity is developed by Trefftz boundary‐collocation method. Starting with the general plane piezoelectricity solution derived by Lekhnitskii's formalism, the basic sets of Trefftz functions which satisfy the homogeneous governing equations are derived. Moreover, special sets of Trefftz functions are derived for impermeable elliptical voids, impermeable sharp cracks and permeable sharp cracks with arbitrary orientations with respect to the material poling direction. The functions in the special sets satisfy not only the homogeneous governing equations but also the boundary conditions at the peripheries of the pertinent defects. By adopting Trefftz functions as the trial functions, multi‐domain Trefftz boundary‐collocation method is formulated. Numerical examples are presented to illustrate the efficacy of the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The governing equations for the interaction of two immiscible fluids within a deforming porous medium are formulated on the basis of generalized Biot theory. The displacement of the solid skeleton, the pressure and saturation of wetting fluid are taken as primary unknowns of the model. The finite element method is applied to discretize the governing eqations in space. The time domain numerical solution to the coupled problem is achieved by using an unconditionally stable direct integration procedure. Examples are presented to illustrate the performance and capability of the approach.  相似文献   

9.
A layerwise theory for the analysis of free‐edge effects in thermally loaded symmetric laminates with arbitrary layups is developed. The laminate under investigation is decomposed into an arbitrary number of mathematical layers through the thickness. The theory approach employs displacement terms according to Classical Laminate Plate Theory which are upgraded by layerwise displacement functions. The additional layerwise displacement functions consist of unknown inplane functions and linear thickness terms. The principle of minimum potential energy yields the governing Euler–Lagrange equations which allow for a closed‐form analytical solution for the inplane functions, thus characterizing this method as a semi‐analytical one. The underlying boundary conditions of traction free edges are fulfilled in an integral sense. The present results are in excellent agreement with accompanying finite element computations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A model for predicting elastic–plastic stresses within a surface-heated porous structure has been developed. The relevant phenomena for the moisture, pressure, temperature and displacement fields in thermo-elastic-plastic porous material are analysed. Considering mass and energy transfer processes, a set of governing differential equations is presented. The solution of the problem has been obtained with a finite difference scheme. The results demonstrate the influence of the evaporation mechanism on pressure and thermal stresses within the porous material.  相似文献   

11.
Perfectly matched layers for transient elastodynamics of unbounded domains   总被引:1,自引:0,他引:1  
One approach to the numerical solution of a wave equation on an unbounded domain uses a bounded domain surrounded by an absorbing boundary or layer that absorbs waves propagating outward from the bounded domain. A perfectly matched layer (PML) is an unphysical absorbing layer model for linear wave equations that absorbs, almost perfectly, outgoing waves of all non‐tangential angles‐of‐incidence and of all non‐zero frequencies. In a recent work [Computer Methods in Applied Mechanics and Engineering 2003; 192: 1337–1375], the authors presented, inter alia, time‐harmonic governing equations of PMLs for anti‐plane and for plane‐strain motion of (visco‐) elastic media. This paper presents (a) corresponding time‐domain, displacement‐based governing equations of these PMLs and (b) displacement‐based finite element implementations of these equations, suitable for direct transient analysis. The finite element implementation of the anti‐plane PML is found to be symmetric, whereas that of the plane‐strain PML is not. Numerical results are presented for the anti‐plane motion of a semi‐infinite layer on a rigid base, and for the classical soil–structure interaction problems of a rigid strip‐footing on (i) a half‐plane, (ii) a layer on a half‐plane, and (iii) a layer on a rigid base. These results demonstrate the high accuracy achievable by PML models even with small bounded domains. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A computational algorithm, based on the combined use of mixed finite elements and classical Rayleigh–Ritz approximation, is presented for predicting the nonlinear static response of structures; The fundamental unknowns consist of nodal displacements and forces (or stresses) and the governing nonlinear finite element equations consist of both the constitutive relations and equilibrium equations of the discretized structure. The vector of nodal displacements and forces (or stresses) is expressed as a linear combination of a small number of global approximation functions (or basis vectors), and a Rayleigh–Ritz technique is used to approximate the finite element equations by a reduced system of nonlinear equations. The global approximation functions (or basis vectors) are chosen to be those commonly used in static perturbation technique; namely a nonlinear solution and a number of its path derivatives. These global functions are generated by using the finite element equations of the discretized structure. The potential of the global–local mixed approach and its advantages over global–local displacement finite element methods are discussed. Also, the high accuracy and effectiveness of the proposed approach are demonstrated by means of numerical examples.  相似文献   

13.
Summary This paper firstly conducts a systematic investigation of the problem of a rigid punch indenting an anisotropic piezoelectric half-space. The Fourier transform method is employed to the mixed boundary value problem. Using the principle of linear superposition, the resulting transformed (algebraic) equations, whose right-hand sides contain both pressure and electric displacement terms, can be solved by superposing the solutions of two sets of algebraic equations, one containing pressure and another containing electric displacement. For an arbitrarily shaped punch, two governing equations are derived, which can be solved numerically. In the case of transversely isotropic piezoelectric media, the two governing equations are corresponding with that given by others using potential theory. Particularly, when the punch has elliptic cross-section, and the pressure and electric displacement are given by some certain forms of polynomial functions, then the displacement and electric potential are prescribed by polynomial functions in the contact area. The parameters contained in it satisfy a set of linear algebraic equations, whose coefficients involve contour integrals. The problem of indentation by a smooth flat punch is examined for special orthotropic piezoelectric media, and some results obtained can be degenerated to the case of transversely isotropic piezoelectric media.  相似文献   

14.
In this paper, a numerical model is developed for the fully coupled analysis of deforming porous media containing weak discontinuities which interact with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media are derived within the framework of the generalized Biot theory. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three-phase formulation. The other variables are incorporated into the model via the experimentally determined functions that specify the relationship between the hydraulic properties of the porous medium, i.e. saturation, permeability and capillary pressure. The spatial discretization by making use of the extended finite element method (XFEM) and the time domain discretization by employing the generalized Newmark scheme yield the final system of fully coupled non-linear equations, which is solved using an iterative solution procedure. Numerical convergence analysis is carried out to study the approximation error and convergence rate of several enrichment strategies for bimaterial multiphase problems exhibiting a weak discontinuity in the displacement field across the material interface. It is confirmed that the problems which arise in the blending elements can have a significant effect on the accuracy and convergence rate of the solution.  相似文献   

15.
16.
The dynamic response of a two-dimensional generalized thermoelastic problem with temperature-dependent properties is investigated in the context of generalized thermoelasticity proposed by Lord and Shulman. The governing equations are formulated, and due to the nonlinearity and complexity of the governing equations resulted from the temperature-dependent properties, a numerical method, i.e., finite element method is adopted to solve such problem. By means of virtual displacement principle, the nonlinear finite element equations are derived. To demonstrate the solution process, a thermoelastic half-space subjected to a thermal shock on its bounding surface is considered in detail. The nonlinear finite element equations for this problem are solved directly in time domain. The variations of the considered variables are obtained and illustrated graphically. The results show that the effect of the temperature-dependent properties on the considered variables is to reduce their magnitudes, and taking the temperature-dependence of material properties into consideration in the investigation of generalized thermoelastic problem has practical meaning in predicting the thermoelastic behaviors accurately. It can also be deduced that directly solving the nonlinear finite element equations in time domain is a powerful method to deal with the thermoelastic problems with temperature-dependent properties.  相似文献   

17.
Domain switching is the cause of significant non‐linearity in the response of piezoelectric materials to mechanical and electrical effects. In this paper, the response of piezoelectric solids is formulated by coupling thermal, electrical, and mechanical effects. The constitutive equations are non‐linear. Moreover, due to the domain switching phenomenon, the resulting governing equations become highly non‐linear. The corresponding non‐linear finite element equations are derived and solved by using an incremental technique. The developed formulation is first verified against a number of benchmark problems for which a closed‐form solution exists. Next, a cantilever beam made of PZT‐4 is studied to evaluate the effect of domain switching on the overall force–displacement response of the beam. A number of interesting observations are made with respect to the extent of non‐linearity and its progressive spread as the load on the beam increases. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
In order to develop robust finite element models for analysis of thin and moderately thick plates, a simple hybrid displacement function element method is presented. First, the variational functional of complementary energy for Mindlin–Reissner plates is modified to be expressed by a displacement function F, which can be used to derive displacement components satisfying all governing equations. Second, the assumed element resultant force fields, which can satisfy all related governing equations, are derived from the fundamental analytical solutions of F. Third, the displacements and shear strains along each element boundary are determined by the locking‐free formulae based on the Timoshenko's beam theory. Finally, by applying the principle of minimum complementary energy, the element stiffness matrix related to the conventional nodal displacement DOFs is obtained. Because the trial functions of the domain stress approximations a priori satisfy governing equations, this method is consistent with the hybrid‐Trefftz stress element method. As an example, a 4‐node, 12‐DOF quadrilateral plate bending element, HDF‐P4‐11 β, is formulated. Numerical benchmark examples have proved that the new model possesses excellent precision. It is also a shape‐free element that performs very well even when a severely distorted mesh containing concave quadrilateral and degenerated triangular elements is employed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The dynamic responses of a poroelastic half-space to an internal point load and fluid source are investigated in the frequency domain in this paper. By virtue of a method of displacement potentials, the 3D general solutions of homogeneous wave equations and fundamental singular solutions of inhomogeneous wave equations are derived, respectively, in the frequency domain. The mirror-image technique is then applied to construct the dynamic Green’s functions for a poroelastic half-space. Explicit analytical solutions for displacement fields and pore pressure are obtained in terms of semi-infinite Hankel-type integrals with respect to the horizontal wavenumber. In two limiting cases, the solutions presented in this study are shown to reduce to known counterparts of elastodynamics and those of Lamb’s problem, thus ensuring the validity of our result.  相似文献   

20.
A unified generalized thermoelasticity solution for the transient thermal shock problem in the context of three different generalized theories of the coupled thermoelasticity, namely: the extended thermoelasticity, the temperature-rate-dependent thermoelasticity and the thermoelasticity without energy dissipation is proposed in this paper. First, a unified form of the governing equations is presented by introducing the unifier parameters. Second, the unified equations are derived for the thermoelastic problem of the isotropic and homogeneous materials subjected to a transient thermal shock. The Laplace transform and inverse transform are used to solve these equations, and the unified analytical solutions in the transform domain and the short-time approximated solutions in the time domain of displacement, temperature and stresses are obtained. Finally, the numerical results for copper material are displayed in graphical forms to compare the characteristic features of the above three generalized theories for dealing with the transient thermal shock problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号