首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BaNd2Ti5O14 powders were directly prepared by high-temperature spray pyrolysis. The powders prepared at temperatures of 1300 and 1500 °C exhibited a pure BaNd2Ti5O14 phase. The powders prepared at 1300 °C were spherical in shape. However, the powders prepared at 1500 °C showed non-spherical shapes. The BaNd2Ti5O14 powders had a composition similar to that of the spray solution. The mean sizes of the BaNd2Ti5O14 powders increased from 0.23 to 0.60 μm when the concentration of the spray solution was increased from 0.01 to 0.2 M. At a sintering temperature of 1100 °C, bridge-like structures were formed between the powders. Pellets sintered at 1300 °C exhibited a dense structure comprising rod-like crystals.  相似文献   

2.
Bulk glasses containing HfO2 nano-crystallites of 20–50 nm were prepared by hot-pressing of HfO2–Al2O3–Y2O3 glass microspheres at 915 °C for 10 min. By annealing at temperatures below 1200 °C, the bulk glasses were converted into transparent glass-ceramics with HfO2 nano-crystallites of 100–200 nm, which showed the maximum transmittance of ~70% in the infrared region. An increase of annealing temperature (>1300 °C) resulted in opaque YAG/HfO2/Al2O3 eutectic ceramics. The eutectic ceramics contained fine Al2O3 crystallites and showed a high hardness of 19.8 GPa. The fracture toughness of the eutectic ceramics increased with increasing annealing temperature, and reached the maximum of 4.0 MPa m1/2.  相似文献   

3.
The effects of Mn3O4 addition and reductive atmosphere (N2:H2 = 97:3) annealing on the microstructure and phase stability of yttria stabilized zirconia (YSZ) ceramics during sintering at 1500 °C for 3 h in air and subsequent annealing in a reductive atmosphere were investigated. Mn3O4 added 6 mol% YSZ (6YSZ) and 10 mol% YSZ (10YSZ) ceramics were prepared via the conventional solid-state reaction processes. The X-ray diffraction results showed that a single cubic phase of ZrO2 was obtained in 1 mol% Mn3O4 added 6YSZ ceramic at a sintering temperature of 1500 °C for 3 h. A trace amount of monoclinic ZrO2 phases were observed for 1 mol% Mn3O4 added 6YSZ ceramics after annealing at 1300 °C for 60 cycles in a reductive atmosphere by transmission electron microscopy. Furthermore, a single cubic ZrO2 phase existed stably as Mn3O4 added 10YSZ ceramics was annealed at 1300 °C for 60 cycles in reductive atmosphere.  相似文献   

4.
Zirconium diboride (ZrB2)-zirconium dioxide (ZrO2) ceramic powders were prepared by comparing two different boron sources as boron oxide (B2O3) and elemental boron (B). The production method was high-energy ball milling and subsequent annealing of powder blends containing stoichiometric amounts of ZrO2, B2O3/B powders in the presence of graphite as a reductant. The effects of milling duration (0, 2 and 6 h), annealing duration (6 and 12 h) and annealing temperature (1200–1400 °C) on the formation and microstructure of ceramic powders were investigated. Phase, thermal and microstructural characterizations of the milled and annealed powders were performed by X-ray diffractometer (XRD), differential scanning calorimeter (DSC) and transmission electron microscope (TEM). The formation of ZrB2 starts after milling for 2 h and annealing at 1300 °C if B2O3 is used as boron source and after milling for 2 h and annealing at 1200 °C if B is used as boron source.  相似文献   

5.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

6.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

7.
Ceramic powders of (1  x)BaNb2O6xSrNb2O6 (0  x  1) composition were prepared by solid-state reaction. Thermal analysis data revealed that SrNb2O6 was formed at a lower temperature, compared with BaNb2O6. Ba1−xSrxNb2O6 mixtures show an intermediate thermal behaviour. For the samples thermally treated at 1000 °C/3 h, X-ray diffraction data pointed out single phase compositions for x = 0.4–0.6, which means that SrNb2O6 completely dissolves into BaNb2O6 lattice in this composition range The temperature increase at 1150 °C leads to partial decomposition and supplementary demixing phenomena for all the mixtures analyzed. At 1300 °C, solid-state reactions progress and a structural rearrangement occurs, so that the same phase composition identified at 1000 °C was found again. A slight increase of the isomorphy limit of SrNb2O6 into BaNb2O6 lattice was also noticed. Single-phase compositions were identified for the samples with x = 0.3–0.6.  相似文献   

8.
Bi2Zn2/3Nb4/3O7 thin films were prepared on Al2O3 substrates by pulsed laser deposition. The phase compositions and microstructures were characterized by X-ray diffraction and atomic force microscopy. The as-deposited films were all amorphous in nature. All films were crystallized after the post annealing at the temperature range of 700–900 °C for 30 min in air. The texture characteristics change with annealing temperature. A split post dielectric resonator method was used to measure the microwave dielectric performance at the resonant frequencies of 10, 15 and 19 GHz. For the films annealed at 900 °C, the preferential orientation is similar to the monoclinic BZN bulk. The microwave dielectric constants at 10, 15 and 19 GHz are 69.4, 58.9 and 47.9, respectively, which are closer to these of the monoclinic BZN bulk.  相似文献   

9.
《Ceramics International》2016,42(10):11966-11973
A series of spinel-type CuMn2O4 ceramic pigments were prepared by a facile and low-cost sol-gel solution combustion method and used as cost-effective materials to fabricate thickness sensitive spectrally selective (TSSS) paint coatings by a convenient spray-coating technique. The chemical component, crystalline morphology, and optical property of the copper manganese oxide ceramic pigment could be accurately controlled by altering the annealing temperature. X-ray diffraction (XRD) analysis confirmed that the ceramic pigments annealed at 500 °C for 1 h coincided well with the XRD patterns of crystalline CuMn2O4 in the JCPDS database, and there were segregated phases of CuO and Mn2O3. Furthermore, the pure spinel CuMn2O4 phase could be achieved at 900 °C for 1 h. The copper manganese oxide ceramic pigments could serve as an effective pigment for fabricating the TSSS paint coating, and the TSSS paint coatings based on ceramic pigments calcined at 900 °C showed solar absorptance of 0.895–0.905 and thermal emittance of 0.186–0.310. In addition, the accelerated thermal stability test revealed that the TSSS paint coating exhibited good thermal stability when it was exposed to air at a temperature of 300 °C for 300 h. Hence, the fabricated TSSS paint coating could be used as a solar absorber coating in the low-to-mid temperature domain.  相似文献   

10.
Nano-scale In2O3, Ga2O3 and ZnO powder mixture prepared by a hybrid process of chemical dispersion and mechanical grinding was adopted for the In–Ga–Zn–O (IGZO) sputtering target fabrication. A pressure-less sintering at 1300 °C for 6 h yielded the target containing sole InGaZnO4 phase with relative density as high as 93%. Consequently, the thin-film transistor (TFT) devices containing amorphous IGZO channels were prepared by using the self-prepared target and the electrical measurements indicated the TFT subjected to a post annealing at 300 °C exhibits the best device performance with the saturation mobility = 14.7 cm2/V s, threshold voltage = 0.57 V, subthreshold gate swing = 0.45 V/decade and on/off ratio = 108. Capacitance–voltage measurement indicated that post annealing effectively suppresses the interfacial traps density at the IGZO/SiO2 interface and thus enhances the electrical performance of TFT.  相似文献   

11.
Microstructure development during sintering in 3 mol% Y2O3-stabilized tetragonal zirconia polycrystal doped with a small amount of Al2O3 was investigated in the isothermal sintering conditions of 1300–1500 °C. At the low sintering temperature at 1300 °C, although the density was relatively high, the grain-growth rate was much slow. In the specimen sintered at 1300 °C for 50 h, Y3+ and Al3+ ions segregated along grain boundaries within the widths of about 10 and 6 nm, respectively. In grain interiors, the cubic-phase regions were formed by not only a grain-boundary segregation-induced phase-transformation mechanism but also by spinodal decomposition. The grain-growth behavior was kinetically analyzed using the grain-size data in 1300–1500 °C, which indicated that the grain-growth rate was enhanced by Al2O3-doping. These phase-transformation and grain-growth behaviors are reasonably explained by the diffusion-enhanced effect of Al2O3-doping.  相似文献   

12.
Mg0.5Cu0.05Zn0.45Fe2O4 nanoparticles were prepared through sol–gel method using polyvinyl alcohol as a chelating agent. The as prepared sample was annealed at three different temperatures (500 °C, 700 °C and 900 °C). The phase formation, morphology and magnetic properties with respect to annealing temperature were studied using the characterisation techniques like X-ray diffraction (XRD) as well as Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM), respectively. The crystallite size and magnetisation showed increasing trend with annealing temperature. The coercivity increased up to a particular annealing temperature and decreased thereafter, indicating transition from single domain to multi domain state with increasing annealing temperature. Further, to know the suitability of the material, as a ferrite core, in multilayer chip inductors, the powder sample annealed at 500 °C was compacted in the form of torroids and sintered at three different temperatures (800 °C, 900 °C and 950 °C). The permeability showed increasing trend with the increase of sintering temperature since the permeability depends on microstructure. The frequency dispersion of permeability, for the sintered samples, demonstrated high frequency stability as well as high operating frequency. The cut-off frequency for the sintered samples 800 °C, 900 °C and 950 °C is 32 MHz, 30.8 MHz and 30.4 MHz, respectively.  相似文献   

13.
Amorphous boron carbide (α-B4C) coatings were prepared on SiC substrates by chemical vapor deposition (CVD) from CH4/BCl3/H2/Ar mixtures at low temperature (900–1050 °C) and reduced pressure (10 kPa). The deposited coatings were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results showed that two kinds of α-B4C coatings were deposited with different microstructures and phase compositions, and the effect of deposition temperature was significant. When deposited at 1000 °C and 1050 °C, the coatings exhibited a nodular morphology and had a relatively low content of boron. The free carbon was distributed in them inhomogeneously; in contrast, when deposited at 900 °C and 950 °C, the coatings presented a comparatively flat morphology and had a uniform internal structure and high boron content. They did not contain free carbon. At the last of this paper, the pertinent mechanisms resulting in differences in microstructure and phase composition were discussed.  相似文献   

14.
《Ceramics International》2016,42(6):7072-7079
The catalytic effect of ytterbium oxide (Yb2O3) on the nitriding reaction of Si compacts was investigated. Si powder mixtures containing Yb2O3 were prepared and nitrided in the form of compacts with a multi-step heating schedule over the range of 1200 °C–1450 °C. The nitriding profiles of the powder mixture with increasing temperature indicated that Yb2O3 clearly promoted the nitridation of Si compacts at 1200 °C compared with the pure Si compact containing no additives. The critical role of Yb2O3 on the nitridation of Si, was elucidated that Yb2O3 promotes the loss of initial SiO2 of the raw Si powder via the measurement of the weight changes at low temperature (1100 °C) and thermogravimetric analysis under N2 atmosphere. It was also found that the β-ratio of fully nitrided Si was closely related to the intermediate degree of nitridation at 1200 °C and 1300 °C.  相似文献   

15.
In the present study, an Al2O3/Ni nanocomposite containing 5 vol% Ni is prepared by pressureless sintering at 1400°C for 2 h. Most nickel inclusions, around 70% in the sintered nanocomposite, locate at the intergranular sites, the triple junctions and Al2O3/Al2O3 grain boundaries. The average size of the nickel inclusions at the triple junctions, grain boundaries and intragranular locations is 145, 131 and 73 nm, respectively. The average size of all nickel inclusions is 118 nm. The presence of nickel inclusions can prohibit the grain growth of matrix grains. The size of Al2O3 grains in the sintered nanocomposite is only 490 nm. The strength of the nanocomposite is thus high for the refined microstructure. The matrix Al2O3 grains and Ni inclusions at triple junctions underwent considerable coarsening during a post-annealing treatment at 1300°C for 2 h. The strength of the annealed composites is thus reduced significantly after annealing.  相似文献   

16.
《Ceramics International》2017,43(2):1809-1818
The densification and biocompatibility of sintered 3.0 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramics, with X wt% Fe2O3 and 5.0 wt% mica powders (denoted by 3Y-TZP: X-5.0 wt% mica) have been studied. When the pellets of 3Y-TZP: X-5.0 wt% mica were sintered at 1300 °C for 1 h, the relative shrinkage increases from 19.20–19.43% with the X increased from 0.3 to 1.0. The relative shrinkage of pellets containing 1.0 wt% Fe2O3 (X=1.0) increased from 19.43–19.59% when sintering temperatures were raised from 1300 °C to 1450 °C. X-ray diffraction results show that the pellets of 3Y-TZP: X-5.0 wt% mica sintered at 1400 °C for 1 h only contained single phase of tetragonal ZrO2 (t-ZrO2). When the sintering temperature was higher than 1400 °C, the Vickers microhardness was greatest in the pellets with X=0.5. Within pellets with the same Fe2O3 content, the dominant wavelength (λd) was only slightly different for pellets sintered at 1300 °C and those sintered at 1450 °C. The results of the materials were evaluated in vitro cytotoxicity tests reveals that the powders and sintered pellets are safe materials. The oral mucosa irritation tests did not find erythema or histopathological change including normal epithelium, and was free from leucocyte infiltration, vascular congestion and oedema.  相似文献   

17.
In the present work, Al2O3–20 wt%Al2TiO5 composite was prepared from reaction sintering of alumina and titania nanopowders. The nano-sized raw powders were reconstituted into nanostructured particles by ball milling. Then, the nanostructured reconstituted powders were pressed and pressureless-sintered into bulk ceramics at 1300, 1400, 1500 °C for 2 h. The phase composition and microstructures of reconstituted powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope and energy-dispersive spectrometer (EDS). The microstructural analysis of the ceramic showed that the average grain size of the alumina–aluminium titanate composite increases with increasing the temperature. Also, SEM proved the existence of a proper interface between Al2TiO5 and Al2O3 grains and preferential distribution of aluminium titanate particles in the grain boundaries. XRD analysis indicated the absence of rutile titania in the sintered composite ensuring complete formation of aluminium titanate. The hardness of the samples sintered at 1300, 1400, 1500 °C were 4.8, 6.2 and 8.5 GPa, respectively.  相似文献   

18.
NdMgAl11O19 ceramic was prepared by solid-state reaction at 1700 °C for 10 h in air, and exhibited a single phase of magnetoplumbite structure. Reaction between molten V2O5 and NdMgAl11O19 was investigated at 950 °C using an X-ray diffractometer, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Molten V2O5 reacts with NdMgAl11O19 to form α-Al2O3, NdVO4 and MgAl2O4 at 950 °C in air. After hot corrosion at 950 °C for 50 h, α-Al2O3 is the main corrosion product. The thickness of the corrosion layer gradually increases with increasing corrosion time from 10 to 50 h.  相似文献   

19.
《Ceramics International》2017,43(9):6996-7001
An efficient and flexible chemical co-precipitation method has been used to synthesize nanoscale Al2O3-GdAlO3 powders with eutectic composition. The as-synthesized powders exhibit a highly dispersive and homogeneous distribution with an average particle size of 50 nm. The phase transition in the resulting powders strongly depends upon the calcination temperature. GdAlO3 undergoes complete crystallization after calcination at 1050 °C, however, the diffraction peaks of α-Al2O3 are found at a relatively high calcination temperature of at least 1300 °C. The fully-densified Al2O3-GdAlO3 ceramic with eutectic composition obtained by hot pressing the nanoscale powders at 1500 °C exhibits a room temperature flexural strength of 556 MPa, a Vickers hardness of 17.3 GPa and a fracture toughness of 7.5 MPa m1/2. The high temperature flexural strength of the as-sintered Al2O3-GdAlO3 ceramic is measured to be 515 MPa after bending tests at 1000 °C.  相似文献   

20.
V2O5 reaction and melt infiltration in plasma-sprayed 7 wt% Y2O3–ZrO2 (YSZ) coatings were investigated at temperatures ranging from 750 °C to 1200 °C using SEM and TEM combined with EDS. The interlamellar pores and intralamellar cracks, common in plasma-sprayed materials, provide pathway for the molten species. The microstructure of the contaminated coatings is therefore the result of the interplay between the dissolution/reaction rates of the V2O5 with YSZ coating and the infiltration rates of the molten species. Near the coating surface, the reaction front proceeds in a planar fashion, via dissolution of the lamella and precipitation of fine-grained reaction products composed of ZrV2O7 (for reactions at 750 °C and below), m-ZrO2 and YVO4. The thickness of this planar reaction zone or PRZ was found to increase as reaction time and temperature increased. The melted V2O5 was observed to infiltrate along the characteristic microstructure of plasma-sprayed coatings, i.e. the interconnected pores and cracks, and react with the YSZ. The thickness of this melt infiltrated reaction zone or MIRZ ranged from 5 μm for reactions at 750 °C for 30 min to 130 μm for reactions at 1000 °C for 90 min. At 1200 °C, only a PRZ was observed (i.e. the thickness of the MIRZ was nominally zero), suggesting that the dissolution reaction within the pores/cracks and subsequent formation of reaction products may limit infiltration. Fifty-hour heat-treatments at 1000 °C and 1200 °C prior to reaction with the V2O5 at 800 °C for 90 min were used to change the microstructural features of the coating, such as crack connectivity and pore size. The heat-treatment at 1000 °C was found most deleterious to the coating due to large cracks created via a desintering process that afforded deep penetration of the molten V2O5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号