首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A critical crevice solution and IR drop crevice corrosion model   总被引:1,自引:0,他引:1  
This paper presents a mechanistic model describing the dynamic concentration profiles and corrosion currents within a corroding crevice. The model couples anodic areas within the crevice with cathodic areas on the bold surface. It also incorporates the combined effects of the chemical attack of the crevice solution along with the electric potential changes in the crevice and over the bold surface. The mathematical model is used to predict the dynamic crevice pH profile and remarkable agreement with experimental data is evident. Three crevice corrosion phases were determined that correspond to the evolution of the electric potential drop within the crevice.  相似文献   

2.
The initiation and propagation of crevice corrosion on the Ni–Cr–Mo Alloy-22 has been studied in concentrated chloride solutions under galvanically-coupled and galvanostatic conditions. Under galvanically-coupled natural corrosion conditions crevice corrosion initiated but propagation was limited by repassivation. This was attributed to the slow kinetics of oxygen reduction on passive surfaces external to the crevice. Under galvanostatic conditions a potential more positive than 200 mVAg/AgCl and an applied current greater than 5 μA were required to stabilize propagation. A minimum critical current density to establish active sites within the crevice was estimated to be around 250 μA cm−2.  相似文献   

3.
The crevice corrosion behaviour of stainless steels containing 25 mass% Cr, 3 mass% Mo and various amounts of Ni was investigated in natural seawater. The results showed that ferritic steels containing nickel were more resistant to corrosion than both ferritic steels without nickel and austenitic steels. The superiority of the Ni bearing ferritic steel over the other steels was in close agreement with the depassivation pH of those steels in acidic chloride solutions. The results showed that the addition of Ni to ferritic steel was effective in decreasing the depassivation pH and the dissolution rate in acidic chloride solutions at crevices.  相似文献   

4.
The crevice corrosion behaviour of 13Cr stainless steel in NaCl solution was investigated mainly by electrochemical noise measurements, considering the influences of the crevice opening dimension (a) and the area ratio of the electrode outside the crevice to the one inside the crevice (r). Results show that the increase of r value prolongs the incubation period of crevice corrosion, but crevice corrosion develops rapidly once the crevice corrosion occurs. The crevice corrosion develops preferentially at the crevice bottom and then spreads to the whole electrode surface. Proton could reduce on the uncorroded area and hydrogen bubbles form inside the crevice.  相似文献   

5.
The change of polarization curves and surface morphologies of SUS304 stainless steel was investigated in 3.5 mass% NaCl solution with or without the application of ultrasound (US). As the result, both the pitting corrosion and the crevice corrosion were largely suppressed by the application of US. The reason is attributed to the decrease in the concentration of hydrogen and chloride ions in pits or in the crevice by removing the corrosion product and stirring the liquid there.  相似文献   

6.
The influence of microstructure evolution and alloying element redistribution of UNS S32304 duplex stainless steel induced by annealing treatment on the crevice corrosion behaviour was studied. As the annealing temperature was increased from 1030 to 1150 °C, the crevice corrosion resistance was decreased and the active peaks were not only increased in magnitude but also shifted towards the more noble direction. Austenite and ferrite have greatly different polarization behaviour within the crevice. This study provides guidance to the material design and usage in industry field in consideration of different polarization behaviour induced by the evolution of microstructure and alloying elements.  相似文献   

7.
The crevice corrosion of UNS S32101 in neutral 0.1 M NaCl solutions at room temperature was investigated directly by a facile method. Experimental results showed that both delayed and immediate crevice corrosion can be initiated. Morphology study indicated that the heaviest corrosion attack happened just below the passive/active boundary on the crevice wall. The relocation of the active dissolution regions during crevice corrosion was observed and explained by established theory. The mechanisms of the delayed and immediate types of crevice corrosion on UNS S32101 duplex stainless steel were discussed.  相似文献   

8.
The effects of applied torque on corrosion behaviour of 316L stainless steel with crevices were investigated using the cyclic potentiodynamic polarization method. Three kinds of crevices (316L-to-polytetrafluoroethylene, 316L-to-fluoroelastomeric and 316L-to-316L) were tested in artificial seawater at 50 °C. Corroded surface morphology was also investigated using scanning electron microscopy. Results indicate similar trends in crevice corrosion susceptibility with increasing applied torque. Among the three crevices, the 316L stainless steel specimen, coupled to the 316L stainless steel crevice former, is the most susceptible to crevice corrosion.  相似文献   

9.
A simple model describes uniform and localised corrosion. We use a mesoscopic cellular automata (CA) type approach, which has proved a powerful tool in the study of rough metal–electrolyte interfaces. The model accounts for two corrosion kinetics and their relative spatial localisation. The competition between the two forms of kinetics of corrosion is shown to reproduce several types of morphology of corrosion ranging from narrow pits or larger cavities to rough surfaces. Simulation and experimental results are compared providing insight on the relation between kinetics and morphologies of the corrosion front. We emphasize the importance of stochastic simulations in relation to CA.  相似文献   

10.
Magnesium alloy AZ91D was exposed in humid air at 95% relative humidity (RH) with a deposition of 70 μg/cm−2 NaCl. The corrosion products formed and the surface electrolyte were analysed after different exposure times using ex situ and in situ FTIR spectroscopy, X-ray diffraction and Ion Chromatography. The results show that magnesium carbonates are the main solid corrosion products formed under these conditions. The corrosion products identified were the magnesium carbonates hydromagnesite (Mg5 (CO3)4 (OH)24H2O) and nesquehonite (MgCO3 3H2O). The corrosion attack starts with the formation of magnesite at locations with higher NaCl contents. At 95% RH, a sequence of reactions was observed with the initial formation of magnesite, which transformed into nesquehonite after 2-3 days. Long exposures result in the formation of pits containing brucite (Mg(OH2)) covered with hydromagnesite crusts. The hydromagnesite crusts restrict the transport of CO2 and O2 to the magnesium surface and thereby favour the formation of brucite. Analysis of the surface electrolyte showed that the NaCl applied on the surface at the beginning was essentially preserved during the initial corrosion process. Since the applied salt was not bound in sparingly soluble corrosion products a layer of NaCl electrolyte was present on the surface during the whole exposure. Thus, Na+ and Cl ions can participate in the corrosion process during the whole time and the availability of these species will not restrict the atmospheric corrosion of AZ91D under these conditions. It is suggested that the corrosion behaviour of AZ91D is rather controlled by factors related to the microstructure of the alloy and formation of solid carbonate containing corrosion products blocking active corrosion sites on the surface.  相似文献   

11.
The effects of vacuum annealing and laser remelting on the microstructure and corrosion behaviour of plasma-sprayed Ni-coated WC coatings on steel substrate have been investigated. The laser remelting was operated in a continuous way while the vacuum annealing was operated with clamping the coating on the graphite face in order to avoid decarburization of WC. When compared with the as-sprayed coating, the microstructure of the post-heating treatment coatings has been found to consist of different phases. Moreover, the denser microstructure can be obtained after heating treatment, especially the laser remelting coating. Electron probe micro analyzer (EPMA) shows that the chemical composition remained largely unchanged except the “bumps” at the interface for as-sprayed and vacuum annealing coatings. The more uniform composition was obtained for laser remelting coating. The Vickers microhardness measurement shows a very slightly enhancement for post-heating treatment coatings, which may be duo to the lamellar structure, lower contemt and bulky of carbide for coatings. However, salt spray corrosion (SSC) show the laser remelting coating has the best corrosion resistance, which is due to its low number defects and uniform distribution of the phase and composition.  相似文献   

12.
The formation of corrosion products on Zn55Al coated steel has been investigated upon field exposures in a marine environment. The corrosion products consisted mainly of zinc aluminium hydroxy carbonate, Zn0.71Al0.29(OH)2(CO3)0.145·xH2O, zinc chloro sulfate (NaZn4(SO4)Cl(OH)6·6H2O), zinc hydroxy chloride, Zn5(OH)8Cl2·H2O and zinc hydroxy carbonate, Zn5(OH)6(CO3)2 were the first three phases were formed initially while zinc hydroxy carbonate Zn5(OH)6(CO3)2 was formed after prolonged exposure in more corrosive conditions. The initial corrosion product formation was due to selective corrosion of the zinc rich interdendritic areas of the coating resulting in a mixture of zinc and zinc aluminium corrosion products.  相似文献   

13.
The mechanism of corrosion product flaking on bare copper sheet and three copper-based alloys in chloride rich environments has been explored through field and laboratory exposures. The tendency for flaking is much more pronounced on Cu and Cu–4 wt%Sn than on Cu–15 wt%Zn and Cu–5 wt%Al–5 wt%Zn. This difference is explained by the initial formation of zinc and zinc–aluminum hydroxycarbonates on Cu15Zn and Cu5Al5Zn, which delays the formation of CuCl, a precursor of Cu2(OH)3Cl. As a result, the observed volume expansion during transformation of CuCl to Cu2(OH)3Cl, and concomitant corrosion product flaking, is less severe on Cu15Zn and Cu5Al5Zn than on Cu and Cu4Sn.  相似文献   

14.
Stainless steels, including duplex stainless steels, are extensively used for equipment in pulp bleaching plants. One serious corrosion problem in chlorine dioxide bleach plants is crevice corrosion of stainless steels, which is frequently the factor that limits their use in bleach plants. Crevice corrosion susceptibility of alloys depends on various environmental factors including temperature, chemical composition of environment and resulting oxidation potential of system. Upsets in the bleaching process can dramatically change the corrosivity of the bleaching solutions leading to temperatures and chemical concentrations higher than those normally observed in the bleach process. When the environmental limits are exceeded the process equipment made of stainless steel can be severely affected. Environmental limits for crevice corrosion susceptibility of eight stainless steel alloys with PRE numbers ranging from 27 to 55 were determined in chlorine dioxide environments. Alloys used in this study included austenitic, ferritic-austenitic (duplex), and superaustenitic stainless steels. The performance of the different stainless steel alloys mostly followed the PRE numbers for the respective alloys. The 654SMO alloy with the highest PRE number of 55 showed the highest resistance to crevice corrosion in this environment. Under the most aggressive chlorine dioxide bleach plant conditions tested, even alloys Nicr3127 and 654SMO with PRE numbers 51 and 55 respectively were susceptible to crevice corrosion attack. The two factors that seem to contribute the most to crevice corrosion and pitting in the investigated environments are temperature and potential.  相似文献   

15.
A corrosion test in static state water vapor environment and a recession test in high velocity steam jet environment for zircon bulk were performed at 1300 °C. The trace of the water vapor corrosion could be recognized on the grain surfaces and at the grain boundaries for the sample after the static state corrosion test. Sand ripple like morphology was generated on the grain surfaces and etch pits with less than 0.1 μm size were formed at the grain boundaries. A porous structure was formed on the bulk surface of the sample after the steam jet test. A glassy phase enriched with silica could be recognized on the surface of the sample after the test. Cracks were induced on the bulk surface during the test. The zircon phase at the bulk surface decomposed into monoclinic zirconia phase and the fraction of silica component at the bulk surface decreased by the steam jet test. The monoclinic zirconia phase was observed to re-generate and grow on the bulk surface.  相似文献   

16.
Corrosion of Zn under acidified marine droplets   总被引:1,自引:0,他引:1  
Atmospheric corrosion of Zn under a variety of simulated marine aerosols was studied. In-situ monitoring of droplet pH, volume loss measurements, identification and distribution of crystalline and amorphous phases from corrosion under different droplets were used to understand the role of acidification on atmospheric corrosion of Zn. Results for various droplet chemistries are discussed in terms of initiation mechanism, phase distribution and surface morphology in conjunction with chemical equilibrium calculations. Zn exposed to sulphate containing droplets had relatively small corrosion rates and greater coverage with Gordaite as compared to sulphate-free droplets where coupons have relatively more coverage with Simonkolleite.  相似文献   

17.
Underground steel pipelines are protected by coatings and cathodic protection (CP). The pipeline corrosion occurs when the coating is disbonded away from a defect or holiday to form a crevice and the corrosion rate varies temporally and spatially in the crevice. In the presence of dissolved oxygen (O2) in soil ground water, a differential O2 concentration cell may develop in the crevice because O2 diffuses more readily into the crevice through the holiday than through the disbonded coating. CP can decrease or eliminate the O2 concentration cell depending on the potential applied at the holiday. Since the coatings are usually non-conductive, CP is unable to protect the steel surface deep inside the crevice. The transport of dissolved O2, and that of dissolved carbon dioxide (CO2) if present, into the crevice through holiday can be key to determining the crevice corrosion rate. In this work, the transient and steady state behavior of the corrosion process is investigated. The effect of the cathodic portion of iron vs. ferrous ion redox reaction on the crevice corrosion rate, which is often neglected traditionally, is further studied. At steady state, the effect of dissolved O2 on the crevice corrosion rate and the added effect of dissolved CO2 are mathematically modeled.  相似文献   

18.
A recently developed model for predicting the repassivation potential has been applied to stainless steels and nickel-base alloys in aqueous environments containing chlorides and various inhibiting anions. The model accounts for the effects of solution chemistry and temperature on the repassivation of localized corrosion by considering competitive dissolution, adsorption, and oxide formation processes at the interface between the metal and the occluded site solution. An extensive database of repassivation potentials has been established for six alloys (UNS 31603, N06600, N06690, S31254, S32205, and UNS S41425) in contact with solutions that combine chlorides with hydroxides, molybdates, vanadates, sulfates, nitrates, and nitrites at various concentrations and temperatures. Also, repassivation potentials are reported for four alloys (UNS N08367, N08800, N06625, and N10276) in chloride solutions. The database has been used to establish the parameters of the model and verify its accuracy. The model quantitatively predicts the transition between concentrations at which localized corrosion is possible and those at which inhibition is expected. It is capable of predicting the repassivation potential over wide ranges of experimental conditions using parameters that can be generated from a limited number of experimental data. The parameters of the model have been generalized as a function of alloy composition, thus making it possible to predict the repassivation potential for alloys that have not been experimentally investigated.  相似文献   

19.
Tensile strength tests are performed on small scale corroded specimens, so as to derive their mechanical properties. The specimens were cut from a box girder that was initially corroded in real sea water conditions. As a result of the tensile tests the mechanical properties of the specimens are determined, namely modulus of elasticity, yield stress, tensile strength, resilience, fracture toughness and total uniform elongation. Regression equations are derived for the properties as a function of the degree of corrosion degradation. It is identified that those material parameters are influenced by the severity of corrosion degradation.  相似文献   

20.
Crevice corrosion of iron was evaluated using the multichannel electrode method in which 10 individual working electrodes (WEs) of pure iron were embedded in resin, placed in an artificial crevice in the range from 0.5 mm to 2.0 mm, and immersed in 0.51 mol dm−3 NaCl solution. The WEs were connected to an electronic circuit which allowed galvanic coupling between them and measurement of their individual coupling current or open circuit potential. Time-transient of the spatial distribution of coupling current and open circuit potential showed sequential transition of the coupling current on WEs at the middle position of the crevice from cathode to anode. The WE near the opening of the crevice initially showed a large anodic current, then a decreasing the anodic current corresponding to the current transition of other WEs, and finally a large cathodic current coupled with the other anodic WEs in the crevice. The transition of coupling current was explained by the change in pH and concentration of dissolved oxygen in the crevice. Thickness of the gap of the artificial crevice affected the transition behavior of coupling current distribution. For example, slower current transition with smaller coupling current was found in the case of a narrower gap. Such properties were related to the introduction and consumption of dissolved oxygen in the crevice solution and the circulation of gap solution from/to the outside of the crevice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号