首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The polymerization of protein subunits into precursor shells empty of DNA is a critical process in the assembly of double-stranded DNA viruses. For the well-characterized icosahedral procapsid of phage P22, coat and scaffolding protein subunits do not assemble separately but, upon mixing, copolymerize into double-shelled procapsids in vitro. The polymerization reaction displays the characteristics of a nucleation limited reaction: a paucity of intermediate assembly states, a critical concentration, and kinetics displaying a lag phase. Partially formed shell intermediates were directly visualized during the growth phase by electron microscopy of the reaction mixture. The morphology of these intermediates suggests that assembly is a highly directed process. The initial rate of this reaction depends on the fifth power of the coat subunit concentration and the second or third power of the scaffolding concentration, suggesting that pentamer of coat protein and dimers or trimers of scaffolding protein, respectively, participate in the rate-limiting step.  相似文献   

2.
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.  相似文献   

3.
Assembly of double-stranded DNA viruses and bacteriophages involves the polymerization of several hundred molecules of coat protein, directed by an internal scaffolding protein. A 163-amino acid carboxyl-terminal fragment of the 303-amino acid bacteriophage P22 scaffolding protein was cloned, overexpressed, and purified. This fragment is active in procapsid assembly reactions in vitro. The circular dichroism spectrum of the fragment, as well as the 1D-NMR and 15N-1H HSQC spectra of the uniformly-labeled protein, indicate that stable secondary structure elements are present. Determination of the three dimensional packing of these elements into the folded scaffolding protein fragment is underway. Structure-based drug design targeted at structural proteins required for viral assembly may have potential as a therapeutic strategy.  相似文献   

4.
Protein folding in the cell is controlled at the levels of translation and post-translational modification, depends on a number of conserved proteins known as chaperones, and is catalyzed by specific enzymes, such as protein disulfide isomerase and peptidyl prolyl cis-trans isomerase. The chaperones stabilize folding intermediates and participate in assembly and disaggregation of supramolecular structures. Bacteriophage T4 is an especially convenient system for studying of protein folding mechanisms, since its genome encodes several virus-specific chaperones. In this review, the chaperones of phage T4 that take part in capsid formation (gp31 and gp40) and in folding and assembly of virion tail fibers (gp38, gp57A) have been considered. Protein encoded by gene 31 completely substitutes co-chaperonin GroES of the host cell in folding of the major capsid protein, gp23, aided by chaperonin GroEL. The product of gene 40, which is homologous to analogs of eukaryotic GroEL and peptidyl prolyl cis-trans isomerase, participates in assembly of gp20 while the formation of procapsid connector. The chaperone encoded by gene 57A is essential for folding and oligomerization of both long and short phage tail fibers. gp38, together with gp57A, participates in the formation of the distal part of the long fibers. This protein seems to represent a principally new group of chaperones that change steric structure of folded polypeptide. One phage chaperone, fibritin, encoded by gene wac (whiskers antigen control) and taking part in assembly the subunits of the long tail fibers is a constituent of the virion. Fibritin is a convenient model for studying mechanisms of folding and oligomerization of fibrous proteins due to its labile triple-stranded alpha-helical coiled-coil structure.  相似文献   

5.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

6.
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.  相似文献   

7.
The filamentous virus fd consists of a single-stranded DNA genome sheathed by 2700 copies of a 50-residue alpha-helical subunit (protein pVIII) and serves as a model assembly of alpha-helices. To advance vibrational assignments for the alpha-helix, we have investigated Raman spectra of fd virions containing 13C and 2H (deuterium) labels at various main-chain sites of the pVIII subunits. 13C was introduced at specific peptide carbonyls, while deuterium was introduced at selected alpha-carbon (Calpha) and amide nitrogen positions. Interpretation of the Raman spectra reveals a previously unrecognized alpha-helix band in the spectral interval 730-745 cm-1, tentatively assigned to a carbonyl in-plane bending mode (amide IV). Experimental evidence has also been obtained for a distinctive alpha-helix marker near 1345 cm-1, assigned to a coupled Calpha-H bending and Calpha-C stretching mode. The fd virions containing 13C-labeled carbonyls exhibit unexpectedly complex amide I profiles, consisting of multiple band components. Amide I splitting resulting from 13C substitution of carbonyls is attributed to decoupling of transition-dipole interactions normally occurring in the extended pVIII helix. The present study identifies novel conformation-dependent Raman bands in a native alpha-helix assembly, confirms amide I and amide III assignments proposed previously for filamentous viruses, and facilitates new Raman assignments for the packaged ssDNA. The alpha-helix markers identified here should also be useful in conformation analyses of other proteins by Raman spectroscopy.  相似文献   

8.
Hepatitis B virus capsid protein comprises a 149 residue "assembly" domain that polymerizes into icosahedral particles, and a 34 residue RNA-binding "protamine" domain. Recently, the capsid structure has been studied to resolutions below 10 A by cryo-electron microscopy, revealing much of its alpha-helical substructure and that it appears to have a novel fold for a capsid protein; however, the resolution is still too low for chain-tracing by conventional criteria. Aiming to establish a fiducial marker to aid in the process of chain-tracing, we have used cryo-microscopy to pinpoint the binding site of a monoclonal antibody that recognizes the peptide from residues 78 to 83. This epitope resides on the outer rim of the 30 A long spikes that protrude from the capsid shell. These spikes are four-helix bundles formed by the pairing of helix-turn-helix motifs from two subunits; by means of a tilting experiment, we have determined that this bundle is right-handed. Variants of the same protein present two clinically important and non-crossreactive antigens: core antigen (HBcAg), which appears early in infection as assembled capsids; and the sentinel e-antigen (HBeAg), a non-particulate form. Knowledge of the binding site of our anti-HBcAg antibody bears on the molecular basis of the distinction between the two antigens, which appears to reflect conformational differences between the assembled and unassembled states of the capsid protein dimer, in addition to epitope masking in capsids.  相似文献   

9.
Bacteriophage phi29 utilizes a viral-encoded 120-base RNA (pRNA) to accomplish dsDNA packaging into a preformed procapsid. Six pRNAs bind to the procapsid and work sequentially. The pRNA contains two functional domains, one for binding to the DNA translocating connector, and the other for interacting with another component of the DNA packaging machinery during DNA translocation. By UV crosslinking, the pRNA was found to bind to the connector specifically and not to the capsid or scaffolding proteins. When purified connectors were incubated with pRNA, rosette-like connector oligomers were observed. These oligomers were found to contain pRNA. A series of deletion mutants of the pRNA were constructed and their ability to perform various tasks involved in phi29 assembly were assayed. The minimum sizes of the pRNA needed for the following activities have been determined: (1) specific binding to procapsid or to connectors; (2) connector or procapsid binding with full efficiency compared with wild-type pRNA; and (3) genomic DNA packaging. In summary, bases 37-91 (55 nt) comprised the minimum sequence required for specific connector binding, although with lower efficiency; bases 6-113 (105 nt with the additional deletion of two nonessential bases, C109 and A106) comprised the minimum sequence required for full connector binding activity; and bases 1-117 comprised the minimum sequence needed for full DNA packaging activity. These data indicate clearly that the helical region composed of bases 1-6 and 113-117 plays a crucial role in DNA translocation, but is dispensable for connector binding. A model for the role of the pRNA in DNA packaging was also presented.  相似文献   

10.
11.
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP23(2) heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP23(2) heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid.  相似文献   

12.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

13.
The assembly of the viral structural proteins into infectious virions is often mediated by scaffolding proteins. These proteins are transiently associated with morphogenetic intermediates but not found in the mature particle. The genes encoding three Microviridae (phiX174, G4 and alpha3) internal scaffolding proteins (B proteins) have been cloned, expressed in vivo and assayed for the ability to complement null mutations of different Microviridae species. Despite divergence as great as 70% in amino acid sequence over the aligned length, cross-complementation was observed, indicating that these proteins are capable of directing the assembly of foreign structural proteins into infectious particles. These results suggest that the Microviridae internal scaffolding proteins may be inherently flexible. There was one condition in which a B protein could not cross-function. The phiX174 B protein cannot productively direct the assembly of the G4 capsid at temperatures above 21 degreesC. Under these conditions, assembly is arrested early in the morphogenetic pathway, before the first B protein mediated reaction. Two G4 mutants, which can productively utilize the phiX174 B protein at elevated temperatures, were isolated. Both mutations confer amino acid substitutions in the viral coat protein but differ in their relative abilities to utilize the foreign scaffolding protein. The more efficient substitution is located in a region where coat-scaffolding interactions have been observed in the atomic structure and may emphasize the importance of interactions in this region.  相似文献   

14.
Despite the development of vaccines, the hepatitis B virus remains a major cause of human liver disease. The virion consists of a lipoprotein envelope surrounding an icosahedral capsid composed of dimers of a 183-residue protein, 'core antigen' (HBcAg). Knowledge of its structure is important for the design of antiviral drugs, but it has yet to be determined. Residues 150-183 are known to form a protamine-like domain required for packaging RNA, and residues 1-149 form the 'assembly domain' that polymerizes into capsids and, unusually for a capsid protein, is highly alpha-helical. Density maps calculated from cryo-electron micrographs show that the assembly domain dimer is T-shaped: its stem constitutes the dimer interface and the tips of its arms make the polymerization contacts. By refining the procedures used to calculate the map, we have extended the resolution to 9 A, revealing major elements of secondary structure. In particular, the stem, which protrudes as a spike on the capsid's outer surface, is a 4-helix bundle, formed by the pairing of alpha-helical hairpins from both subunits.  相似文献   

15.
The crystal structure of bacteriophage Q beta at 3.5 A resolution   总被引:1,自引:0,他引:1  
BACKGROUND: The capsid protein subunits of small RNA bacteriophages form a T = 3 particle upon assembly and RNA encapsidation. Dimers of the capsid protein repress translation of the replicase gene product by binding to the ribosome binding site and this interaction is believed to initiate RNA encapsidation. We have determined the crystal structure of phage Q beta with the aim of clarifying which factors are the most important for particle assembly and RNA interaction in the small phages. RESULTS: The crystal structure of bacteriophage Q beta determined at 3.5 A resolution shows that the capsid is stabilized by disulfide bonds on each side of the flexible loops that are situated around the fivefold and quasi-sixfold axes. As in other small RNA phages, the protein capsid is constructed from subunits which associate into dimers. A contiguous ten-stranded antiparallel beta sheet facing the RNA is formed in the dimer. The disulfide bonds lock the constituent dimers of the capsid covalently in the T = 3 lattice. CONCLUSIONS: The unusual stability of the Q beta particle is due to the tight dimer interactions and the disulfide bonds linking each dimer covalently to the rest of the capsid. A comparison with the structure of the related phage MS2 shows that although the fold of the Q beta coat protein is very similar, the details of the protein-protein interactions are completely different. The most conserved region of the protein is at the surface, which, in MS2, is involved in RNA binding.  相似文献   

16.
17.
Bacteriophage phi6 is a complex enveloped double-stranded RNA virus with a segmented genome and replication strategy quite similar to that of the Reoviridae. An in vitro packaging and replication system using purified components is available. The positive-polarity genomic segments are translocated into a preformed polymerase complex (procapsid) particle. This particle is composed of four proteins: the shell-forming protein P1, the RNA polymerase P2, and two proteins active in packaging. Protein P7 is involved in stable packaging, and protein P4 is a homomultimeric potent nucleoside triphosphatase that provides the energy for the RNA translocation event. In this investigation, we used mutational analysis to study P4 multimerization and assembly. P4 is assembled onto a preformed particle containing proteins P2 and P7 in addition to P1. Only simultaneous production of P1 and P4 in the same cell leads to P4 assembly on P1 alone, whereas the P1 shell is incompetent for accepting P4 if produced separately. The C-terminal part of P4 is essential for particle assembly but not for multimerization or enzymatic activity. Altering the P4 nucleoside triphosphate binding site destroys the ability to form multimers.  相似文献   

18.
Neutrophils play an essential role in the cellular defense of the bovine mammary gland and compromised leukocyte function has been linked to the development of bovine mastitis. During mastitis, large numbers of leukocytes migrate into the mammary tissues where they become activated, resulting in the assembly of neutrophil membrane and cytosolic proteins to form a superoxide anion-generating complex known as the NADPH oxidase. The key membrane-associated component of the NADPH oxidase is flavocytochrome b, which is a heterodimer of p22-phox and gp91-phox. Currently, only the human, porcine, murine, and rattus p22-phox and the human, porcine, and murine gp91-phox gene sequences are known. Because of the important role neutrophils play in bovine host defense, we carried out studies to clone, sequence, and analyze expression of bovine flavocytochrome b. Using polymerase chain reaction cloning techniques and a bovine spleen cDNA library we have cloned both of the bovine flavocytochrome b subunits, p22-phox and gp91-phox. Comparison of the bovine sequences with those of other species also revealed important information regarding key structural features of gp91-phox and p22-phox, including location of putative glycosylation sites. This study greatly contributes to our understanding of the potential functional sites of the flavocytochrome b subunits as well as providing information that can be used to study the role of neutrophils in bovine inflammatory diseases such as mastitis.  相似文献   

19.
We have characterized the maturation of Shaker K+ channel protein and the cellular site of assembly of pore-forming alpha and cytoplasmic beta subunits in a transfected mammalian cell line. Shaker protein is made as a partially glycosylated, immature precursor that is converted to a fully glycosylated, mature product. Shaker protein did not mature when transport from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Consistent with this finding, only the immature form was sensitive to digestion with endoglycosidase H. These results indicate that the immature protein is core-glycosylated in the ER, whereas the oligosaccharides of the mature protein have been further processed in the Golgi compartment. After inhibiting ER-to-Golgi transport, the oligomeric state of Shaker subunits was assessed by cross-linking in intact cells or by solubilization and sucrose gradient sedimentation. The results indicate that Shaker subunits assemble with each other in the ER. When co-expressed, the Kvbeta2 subunit also associated with Shaker in the ER. Assembly with the beta2 subunit did not increase the rate or extent of Shaker protein maturation. Our results indicate that the biogenesis of Shaker K+ channels in vivo involves core glycosylation and subunit assembly in the ER, followed by efficient transfer to the Golgi apparatus where the oligosaccharides are modified.  相似文献   

20.
We have recorded X-ray diffraction patterns at 3.1 A resolution from magnetically aligned fibres of the Pf3 strain of filamentous bacteriophage (Inovirus). The patterns are similar to patterns from the higher-temperature form of the Pf1 strain, indicating that the Pf3 and Pf1 virions have the same helix symmetry and similar protein subunit shape. This is of particular interest, given that the primary structures of the two protein subunits are quite different; and the nucleotide/protein subunit ratio in the Pf3 virion is more than twice that in Pf1, indicating important differences in DNA packaging. We have built a molecular model of the Pf3 protein capsid based on the model of Pf1, and refined it against the diffraction data using simulated annealing. The refinement confirms that the two structures are similar, which may reflect a fundamental motif of alpha-helix packing. However, there are some differences between the structures: the Pf3 subunit appears to be completely alpha-helical, beginning at the N terminus, whereas the first few residues of the Pf1 subunit are not helical; and the structure of the C-terminal region of the Pf3 subunit at the inner surface of the tubular capsid indicates that DNA/protein interactions in this virion may involve both aromatic side-chains and positively charged side-chains, whereas those in the Pf1 virion involve predominantly only the latter. In the course of this work, we have developed new approaches to refinement and validation of helical structures with respect to continuous transform fibre diffraction data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号