首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raw milk and raw milk cheeses can be a source of food-borne pathogens, including Verocytotoxin (Shiga toxin)-producing Escherichia coli (VTEC/STEC). Outbreaks of VTEC O157: H7 infections have been attributed to the consumption of raw milk and associated dairy products. Although the general prevalence of VTEC O157 in raw milk and raw milk cheeses is low, it can be higher for non-O157 VTEC. The clinical significance of many of these VTEC is unclear, although some are associated with disease. Studies show that E. coli O157 strains can survive the various stages of the cheesemaking process and that raw milk and raw milk cheeses remain a potential vehicle for VTEC infections.  相似文献   

2.
The aim of the present study was to investigate the occurrence of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in 'Castellano' cheese, a non-cooked and hard or semi-hard Spanish cheese made from ewe's milk. A total of 83 raw milk cheese samples with different ripening times (2.5, 6 and 12 months) were taken at 30 cheese factories. Samples were examined for the presence of STEC using in the first stage the Association of Official Analytical Chemists (AOAC) official method number 997.11, and then, in the second stage, isolates were tested for virulence genes using genotypic (PCR) methods. Three STEC strains were detected in two samples (2.4%) of 'Castellano' cheese, one with 2.5 and the other one with 12 month-ripening period. From those STEC isolates, two were identified as E. coli O14 and the third presented an O-specific polysaccharide not-groupable serologically (ONG). PCR showed that all isolates were characterized by harbouring the Shiga toxin (stx) stx1 gene and by the absence of the genes for stx2, eaeA, and ehxA virulence factors. This study revealed the potential of STEC to survive in long-ripened-hard cheeses.  相似文献   

3.
This work aims to provide a strategy for rapidly screening food raw materials of bovine origin for the presence of the most frequent O-serogroups of Shiga toxin-encoding Escherichia coli (STEC) involved in food poisoning outbreaks. The prevalence of highly pathogenic serogroups of STEC was surveyed in 25 g portions of minced meat and raw milk using PCR-ELISA and multiplex real-time PCR assays. The prevalence of STEC in raw milk (n=205) and meat samples (n=300) was 21% and 15%, respectively. Contamination by the main pathogenic E. coli O-serogroups representing a major public health concern, including O26, O103, O111, O145, and O157, was potentially around 2.6% in minced meat and 4.8% in raw milk. The MPN values showed an overall contamination ranging from 1 to 2 MPN cells from highly pathogenic serogroups/kg. This survey would indicate that the human pathogenic potential of STEC present in these samples probably remains limited. No conclusion can be drawn at the moment concerning a potential risk for consumers. This rapid screening approach for evaluating the potential presence of highly pathogenic serogroups of STEC in food raw materials should help to improve risk assessment of food poisoning outbreaks.  相似文献   

4.
Raw milk, raw milk cheeses, and raw ground meat have been implicated in Escherichia coli O157:H7 outbreaks. Developing methods to detect these bacteria in raw milk and meat products is a major challenge for food safety. The aim of our study was to develop a real-time PCR assay to detect E. coli O157:H7 in raw milk cheeses and raw ground meat. Well-known primers targeting a mutation at position +93 of the uidA gene in E. coli O157:H7 were chosen, and a specific TaqMan-minor groove binder probe was designed. This probe targets another mutation, at position +191 of the uidA gene in E. coli O157:H7. The first step in the study was to evaluate the specificity of this probe with 156 different O157:H7/NM strains and 48 non-O157:H7/NM strains of E. coli. The sensitivity of the method was evaluated by pre- and postinoculation of cheeses and meat enrichments with different E. coli O157:H7 strains. All the E. coli O157:H7 isolates tested were positive, and none of the other bacteria were detected. Our results indicate that this method is sensitive enough to detect 10(2) E. coli O157:H7 isolates per ml of cheese or meat enrichment broth (24 h at 41.5° C) and is more sensitive than the International Organization for Standardization reference method. We can conclude that this new real-time PCR protocol is a useful tool for rapid, specific, and sensitive detection of E. coli O157:H7 in raw milk and raw ground meat products.  相似文献   

5.
The effects of secondary starter molds of common mold-ripened cheeses on the Shiga toxin-producing Escherichia coli (STEC) O157 were assessed in 3 model systems. In the 1st model, 8 STEC O157 strains were incubated in the spent culture of Penicillium camemberti or Penicillium roqueforti under mild acidic conditions at 25 °C. In the spent cultures of the mold at pH 4.8 to 5.0, the lag times of STEC O157 growth were significantly shorter than those observed in fresh medium. Analyses of the spent culture of P. camemberti showed that the causative agents of the growth enhancement were produced by the mold in response to an acidic environment and were not fully inactivated in heat treatment. In the 2nd model, P. camemberti and STEC O157 were cocultured in acidified milk at 25 °C. The population of STEC O157 reached 10(8) CFU/mL in the presence of the mold, whereas the population steadily declined in the absence of the mold. Although this growth enhancement was partially attributable to alkalization by the mold, it was observed even when the pH of this model was stabilized. In the 3rd model, 2 STEC O157 strains were incubated in the spent cultures of molds at pH 4.5 at 10 °C. In the spent culture, proportions of injured cells were significantly lower and D values were significantly higher than those in control, except one STEC O157 strain in the spent culture of P. camemberti. These results showed that the molds could enhance the growth and survival of STEC O157 by changing the environment. Practical Application: This study demonstrated that molds in foods can improve the growth and survival of the Shiga toxin-producing Escherichia coli O157. Because microbial interactions are ubiquitous in food, our results provide an important insight for understanding the behavior of microorganisms in food.  相似文献   

6.
Between June 2000 and December 2001, 500 food samples were collected from supermarkets and shops selling ready-to-eat food in Rosario, Argentina, and examined for Escherichia coli. Forty-nine E. coli isolates from food samples were further characterized for virulence genes by multiplex polymerase chain reaction (PCR) targeting the stx1, stx2, stx2e, eaeA, CNF1, CNF2, Einv, LTI, STI, and STII genes in four groups. Out of 49 E. coli isolates screened by multiplex PCR, only 10 possessed Shiga toxin genes, stx1 and stx2 genes and none possessed the other genes. The Shiga toxin positive E. coli strains (STEC) were isolated from soft, cottage cheeses, chicken with sauce and vegetables mayonase. These E. coli isolates were serogrouped and belonged to O18 (two strains), O8, O57w, O79, O44, and O128; three strains were untypeable. Pulsed-field gel electrophoresis (PFGE) with XbaI generated a unique profile for each, having 10-15 bands ranging from 50 to 500 kb, except that strain ARG 20 generated small bands and was partly degraded. These strains are potential foodborne pathogens and their presence in ready-to-eat food illustrates the need to keep a careful watch for the source of pathogens and then develop methods to control them.  相似文献   

7.
The purpose of this work was to study the bacterial communities in raw milk and in Danish raw milk cheeses using pyrosequencing of tagged amplicons of the V3 and V4 regions of the 16S rDNA and cDNA. Furthermore, the effects of acidification and ripening starter cultures, cooking temperatures and rate of acidification on survival of added Escherichia coli, Listeria innocua and Staphylococcus aureus in cheeses at different stages of ripening were studied by pyrosequencing and quantitative real time (qRT)-PCR. A high diversity of bacterial species was detected in raw milk. Lactococcus lactis, Streptococcus thermophilus, Lactobacillus casei and Lactobacillus rhamnosus were the main bacteria detected in raw milk and cheeses. Bacteria belonging to the genera Brevibacterium, Staphylococcus, Escherichia, Weissella, Leuconostoc, Pediococcus were also detected in both 16S rDNA and cDNA obtained from raw milk and cheeses. E. coli, which was added to milk used for production of some cheeses, was detected in both DNA and RNA extracted from cheeses at different stages of ripening showing the highest percentage of the total sequence reads at 7 days of ripening and decreased again in the later ripening stages. Growth of E. coli in cheeses appeared to be affected by the cooking temperature and the rate of acidification but not by the ripening starter cultures applied or the indigenous microbiota of raw milk. Growth of L. innocua and S. aureus added to milks was inhibited in all cheeses at different stages of ripening. The use of 16S rRNA gene pyrosequencing and qRT-PCR allows a deeper understanding of the behavior of indigenous microbiota, starter cultures and pathogenic bacteria in raw milk and cheeses.  相似文献   

8.
The behaviour of Escherichia coli O157:H7 was studied during the manufacture and ripening of raw goat milk lactic cheeses. Cheese was manufactured from raw milk in the laboratory and inoculated with E. coli O157:H7 to a final concentration of 10, 100 and 1000 cfu ml(-1). E. coli O157:H7 was counted by CT-SMAC (Mac Conkey Sorbitol Agar with cefixim and tellurite) and O157:H7 ID throughout the manufacturing and ripening processes. When the milk was inoculated with 10, 100 or 1000 cfu ml(-1), counts decreased to less than 1 log(10) g(-1) in curds just prior to moulding. However, viable E. coli O157:H7 were found in cheeses throughout processing, and even after 42 days of ripening. Results indicate that E. coli O157:H7 survives the lactic cheese manufacturing process. Thus, the presence of low numbers of E. coli O157:H7 in milk destined for the production of raw milk lactic cheeses can constitute a threat to the consumer.  相似文献   

9.
大肠杆菌耐酸分子机制研究进展   总被引:1,自引:0,他引:1  
陈卓逐  阚建全  石慧 《食品科学》2015,36(21):273-278
具有耐强酸能力的大肠杆菌在酸性胁迫条件下更易生存。这主要是由于其具有葡萄糖-阻碍耐酸系统、氨基酸依赖型耐酸系统、伴侣蛋白抗酸作用以及保持膜电荷稳定等耐酸机制。了解大肠杆菌的这些耐酸分子机制,可以为食品加工工业控制大肠杆菌的污染提供新的认识,也对一些食源性致病菌的临床预防和治疗具有积极的作用。本文就大肠杆菌耐酸分子机制的研究进行综述。  相似文献   

10.
Escherichia coli O26, O45, O103, O111, O121, O145, and O157 are the predominant Shiga toxin-producing E. coli (STEC) serogroups implicated in outbreaks of human foodborne illness worldwide. The increasing prevalence of these pathogens has important public health implications. Beef products have been considered a main source of foodborne human STEC infections. Robust and sensitive methods for the detection and characterization of these pathogens are needed to determine prevalence and incidence of STEC in beef processing facilities and to improve food safety interventions aimed at eliminating STEC from the food supply. This study was conducted to develop Taqman real-time multiplex PCR assays for the screening and rapid detection of the predominant STEC serogroups associated with human illness. Three serogroup-specific assays targeted the O-antigen gene clusters of E. coli O26 (wzy), O103 (wzx), and O145 (wzx) in assay 1, O45 (wzy), O111 (manC), and O121 (wzx) in assay 2, and O157 (rfbE) in assay 3. The uidA gene also was included in the serogroup-specific assays as an E. coli internal amplification control. A fourth assay was developed to target selected virulence genes for Shiga toxin (stx(1) and stx(2)), intimin (eae), and enterohemolysin (ehxA). The specificity of the serogroup and virulence gene assays was assessed by testing 100 and 62 E. coli strains and non-E. coli control strains, respectively. The assays correctly detected the genes in all strains examined, and no cross-reactions were observed, representing 100 % specificity. The detection limits of the assays were 10(3) or 10(4) CFU/ml for pure cultures and artificially contaminated fecal samples, and after a 6-h enrichment period, the detection limit of the assays was 10(0) CFU/ml. These results indicate that the four real-time multiplex PCR assays are robust and effective for the rapid and reliable detection of the seven predominant STEC serogroups of major public health concern and the detection of their virulence genes.  相似文献   

11.
The large number of cases of human illness caused by Shiga toxin-producing Escherichia coli (STEC) worldwide has raised safety concerns for foods of bovine origin. These human illnesses include diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Severe cases end with chronic renal failure, chronic nervous system deficiencies, and death. Over 100 STEC serotypes, including E. coli O157:H7, are known to cause these illnesses and to be shed in cattle feces. Thus, cattle are considered reservoirs of these foodborne pathogens. Because beef and dairy products were responsible for a large number of STEC outbreaks, efforts have been devoted to developing and implementing control measures that assure safety of foods derived from dairy cattle. These efforts should reduce consumers' safety concerns and support a competitive dairy industry at the production and processing levels. The efficacy of control measures both before harvest (i.e., on-farm management practices) and after harvest (i.e., milk processing and meat packing) for decreasing the risk of STEC contamination of dairy products was evaluated. The preharvest measures included sanitation during milking and management practices designed to decrease STEC prevalence in the dairy herd (i.e., animal factors, manure handling, drinking water, and both feeds and feeding). The postharvest measures included the practices or treatments that could be implemented during processing of milk, beef, or their products to eliminate or minimize STEC contamination.  相似文献   

12.
The U.S. Food and Drug Administration Standard of Identity for Cheddar cheeses requires pasteurization of the milk, or as an alternative treatment, a minimum 60-day aging at > or =2 degrees C for cheeses made from unpasteurized milk, to reduce the number of viable pathogens that may be present to an acceptable risk. The objective of this study was to investigate the adequacy of the 60-day minimum aging to reduce the numbers of viable pathogens and evaluate milk subpasteurization heat treatment as a process to improve the safety of Cheddar cheeses made from unpasteurized milk. Cheddar cheese was made from unpasteurized milk inoculated with 10(1) to 10(5) CFU/ml of a five-strain cocktail of acid-tolerant Escherichia coli O157:H7. Samples were collected during the cheese manufacturing process. After pressing, the cheese blocks were packaged into plastic bags, vacuum sealed, and aged at 7 degrees C. After 1 week, the cheese blocks were cut into smaller-size uniform pieces and then vacuum sealed in clear plastic pouches. Samples were plated and enumerated for E. coli O157:H7. Populations of E. coli O157:H7 increased during the cheese-making operations. Population of E. coli O157:H7 in cheese aged for 60 and 120 days at 7 degrees C decreased less than 1 and 2 log, respectively. These studies confirm previous reports that show 60-day aging is inadequate to eliminate E. coli O157:H7 during cheese ripening. Subpasteurization heat-treatment runs were conducted at 148 degrees F (64.4 degrees C) for 17.5 s on milk inoculated with E. coli O157:H7 at 10(5) CFU/ml. These heat-treatment runs resulted in a 5-log E. coli O157: H7 reduction.  相似文献   

13.
Handcrafted fresh cheeses are popular among consumers in Mexico. However, unsafe raw materials and inadequate food safety practices during cheese manufacture and preservation make them a potential public health risk. The incidence of Salmonella, Listeria, Escherichia coli O157:H7, and staphylococcal enterotoxin was analyzed in two types of fresh cheese (panela and adobera) commonly marketed in Mexico. A total of 200 samples, 100 panela and 100 adobera, were acquired from 100 wholesale milk product distributors who supply small retailers in the Guadalajara metropolitan area, Jalisco State, Mexico. Pathogens were identified using culture and immunoassay (miniVidas) methods. The presence of staphylococcal enterotoxin was determined by an immunoassay method. Of the 200 analyzed samples, 92 were positive for at least one of the pathogens. The incidence in the panela samples was 56%: 34% Salmonella, 16% E. coli O157:H7, and 6% L. monocytogenes. In the adobera samples, incidence was 36%: 20% Salmonella, 4% E. coli O157:H7, and 12% L. monocytogenes. Staphylococcal enterotoxin was not detected in any of the 200 samples. Choice of technique had no effect on detection of pathogen incidence, although the immunoassay method identified more Salmonella serotypes than the culture method. Handcrafted panela and adobera fresh cheeses in Mexico frequently contain pathogenic bacteria and therefore pose a public health risk.  相似文献   

14.
The aim of this study was to quantify, identify, evaluate antimicrobial resistance, and characterize the virulence factors of enteropathogenic (EPEC), Shiga-toxigenic (STEC), and enterohemorrhagic (EHEC) Escherichia coli in raw milk (RM) and legal (LMFC) and illegal (IMFC) Minas Frescal cheeses in southern and northeast Brazil. Illegal cheeses are those made without official inspection service or sanitary surveillance. We evaluated samples of RM produced in Paraná (southern) and Maranhão (northeast) States, LMFC produced using pasteurized milk in inspected industries, and IMFC potentially produced with raw milk. Mean total coliform counts were 8.4 × 104 cfu/mL for RM, 1.4 × 107 cfu/mL for LMFC, and 2.9 × 107 cfu/mL for IMFC. Mean E. coli counts were 2.4 × 103 cfu/mL for RM, 1.9 × 102 cfu/mL for LMFC, and 1.1 × 105 cfu/mL for IMFC. Among the 205 E. coli isolates from RM, 9.75% were identified as EPEC, mainly (90%) in samples from Paraná. Of the total isolates from the cheese samples, 97.4% (n = 111) came from IMFC, of which 1.8 and 2.7% were identified as EPEC and STEC, respectively; no EHEC was detected. The phylogenetic group A (60%) and typical EPEC (68%) predominated, which confirms the possible human origin of pathogenic isolates in RM and IMFC. Of these, 50% were resistant to at least one antibiotic, and streptomycin was the antimicrobial with the highest number (8) of EPEC and STEC resistant isolates. This study reports the first isolation of serogroup O28ac in Brazilian milk. We found no predominance of a specific serogroup of EPEC or STEC in milk or cheese or clonal isolates in the same sample, indicating different origins of the contamination in these products, presumably mostly related to poor hygienic handling.  相似文献   

15.
Shiga toxigenic Escherichia coli (STEC) are important foodborne pathogens causing gastrointestinal disease worldwide. Bacterial attachment to food surfaces, such as stainless steel may lead to cross contamination of foods and subsequent foodborne disease. A variety of STEC isolates, including E. coli O157:H7/H- strains, were grown in planktonic (broth) and sessile (agar) culture, following which initial attachment to stainless steel was determined using epifluorescence microscopy. Experiments were performed to determine whether the number of bacteria attached to stainless steel differed between STEC strains and between the two modes of growth. No relationship was found between STEC strains and the number of bacteria attached to stainless steel. Five STEC strains, including one non-toxigenic O157 isolate, attached in significantly greater (p<0.05) numbers to stainless steel following growth in planktonic culture compared to sessile culture. In contrast, two clinical strains of O157:H7 attached in significantly greater (p<0.05) numbers following growth in sessile culture compared to planktonic culture. Thirteen out of twenty E. coli strains showed no significant difference (p>0.05) in attachment when grown in planktonic or sessile culture. The change of interfacial free energy between the bacterial strains and stainless steel was calculated and the influence of free energy in attachment was determined. Although a significant variation (p<0.05) in free energy values was found between STEC strains, no correlation was found between free energy values and bacterial counts on stainless steel. In addition, no correlation was also found between bacterial hydrophobicity and surface charge values or production of surface structures (type I fimbriae or flagella) (previously determined) with the number of bacteria attached to stainless steel. The results of this study suggest that different growth conditions (planktonic and sessile) can influence the attachment of STEC to stainless steel. Factors other than bacterial physicochemical properties and these surface structures may also influence STEC attachment to stainless steel.  相似文献   

16.
石慧  陈卓逐  阚建全 《食品科学》2016,37(9):250-257
大肠杆菌能够感受环境信号并对环境的变化迅速做出反应。因此,在食品加工贮藏中,大肠杆菌在面对物理、化学因子胁迫时会产生应激反应,使其仍然能够生存和保持毒力,给食品安全带来极大的威胁。本文总结了在常见的食品加工贮藏胁迫因子下,包括热激、冷激、干燥、高渗透压、抗菌肽和酸,大肠杆菌的分子及生理响应机制及其在食品工业中的应用,并对大肠杆菌胁迫响应的未来研究做出展望。  相似文献   

17.
Shiga toxin-producing Escherichia coli (STEC) produce toxins that have been associated with several human illnesses. E. coli O157:H7 is the most well-studied STEC and was first associated with consumption of improperly cooked ground beef in 1982. E. coli O157:H7 is not the only foodborne STEC because other STEC serotypes are also associated with human illnesses. The objective of this study was to assess prevalence of STEC in 23 yearling beef (Angus) heifers grazing an irrigated grass pasture in spring (April), summer (July), fall (October), and winter (December) of 1999. A total of 86 fecal samples were rectally collected and were subjected to microbiological testing for the presence of STEC. Nine E. coli isolates from five heifers (one in spring and fall and three in winter) were toxic to Vero cells. Of these isolates, four were E. coli O157:H7, two belonged to the serogroup O6, one O39:NM, one O113:H-, and the final isolate was untypable. The STEC prevalence rate in our herd ranged from 4% (spring) to 15% (winter). Based on detecting both O157:H7 and non-O157:H7 STEC in our heifers, it is clear that screening fecal samples should not be limited to E. coli O157:H7. Identification of STEC-positive cattle prior to slaughter should help in reducing the risk of beef contamination with such foodborne pathogens if pre- and/or postharvest control measures are applied to such animals.  相似文献   

18.
Shiga toxin-producing Escherichia coli (STEC) strains are important foodborne pathogens. Among these, E. coli O157:H7 is the most frequently isolated STEC serotype responsible for foodborne diseases. However, the non-O157 serotypes have been associated with serious outbreaks and sporadic diseases as well. It has been shown that various STEC serotypes are capable of forming biofilms on different food or food contact surfaces that, when detached, may lead to cross-contamination. Bacterial cells at biofilm stage also are more tolerant to sanitizers compared with their planktonic counterparts, which makes STEC biofilms a serious food safety concern. In the present study, we evaluated the potency of biofilm formation by a variety of STEC strains from serotypes O157:H7, O26:H11, and O111:H8; we also compared biofilm tolerance with two types of common sanitizers, a quaternary ammonium chloride-based sanitizer and chlorine. Our results demonstrated that biofilm formation by various STEC serotypes on a polystyrene surface was highly strain-dependent, whereas the two non-O157 serotypes showed a higher potency of pellicle formation at air-liquid interfaces on a glass surface compared with serotype O157:H7. Significant reductions of viable biofilm cells were achieved with sanitizer treatments. STEC biofilm tolerance to sanitization was strain-dependent regardless of the serotypes. Curli expression appeared to play a critical role in STEC biofilm formation and tolerance to sanitizers. Our data indicated that multiple factors, including bacterial serotype and strain, surface materials, and other environmental conditions, could significantly affect STEC biofilm formation. The high potential for biofilm formation by various STEC serotypes, especially the strong potency of pellicle formation by the curli-positive non-O157 strains with high sanitization tolerance, might contribute to bacterial colonization on food contact surfaces, which may result in downstream product contamination.  相似文献   

19.
Contaminated food continues to be the principal vehicle for transmission of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) to humans. A large number of foods, including those associated with outbreaks (alfalfa sprouts, fresh produce, beef, and unpasteurized juices), have been the focus of intensive research studies in the past few years (2003 to 2006) to assess the prevalence and identify effective intervention and inactivation treatments for these pathogens. Recent analyses of retail foods in the United States revealed E. coli O157:H7 was present in 1.5% of alfalfa sprouts and 0.17% of ground beef but not in some other foods examined. Differences in virulence patterns (presence of both stx1 and stx2 genes versus one stx gene) have been observed among isolates from beef samples obtained at the processing plant compared with retail outlets. Research has continued to examine survival and growth of STEC in foods, with several models being developed to predict the behavior of the pathogen under a wide range of environmental conditions. In an effort to develop effective strategies to minimize contamination, several influential factors are being addressed, including elucidating the underlying mechanism for attachment and penetration of STEC into foods and determining the role of handling practices and processing operations on cross-contamination between foods. Reports of some alternative nonthermal processing treatments (high pressure, pulsed-electric field, ionizing radiation, UV radiation, and ultrasound) indicate potential for inactivating STEC with minimal alteration to sensory and nutrient characteristics. Antimicrobials (e.g., organic acids, oxidizing agents, cetylpyridinium chloride, bacteriocins, acidified sodium chlorite, natural extracts) have varying degrees of efficacy as preservatives or sanitizing agents on produce, meat, and unpasteurized juices. Multiple-hurdle or sequential intervention treatments have the greatest potential to minimize transmission of STEC in foods.  相似文献   

20.
Shiga toxigenic Escherichia coli (STEC) serotypes are important foodborne pathogens that cause gastrointestinal disease worldwide. An understanding of how STEC strains attach to surfaces may provide insight into the potential persistence of and contamination with STEC in food environments. The initial attachment of a selection of STEC serotypes to beef muscle and adipose tissue was evaluated for isolates grown in planktonic and sessile culture. Initial experiments were performed to determine whether attachment differed among STEC strains and between the two modes of growth. Viable counts were obtained for loosely and strongly attached cells, and the strength of attachment (Sr) was calculated. All bacterial isolates grown in sessile culture attached in higher numbers to muscle and adipose tissue than did bacteria in planktonic cultures. For all attachment assays performed, mean concentrations for loosely attached cells were consistently higher than concentrations for strongly attached cells. The mean concentrations for strongly attached bacteria for planktonic and sessile cultures were significantly higher (P < 0.05) on adipose than on muscle tissue. However, some strains of STEC, particularly those from sessile culture, did not differ in their attachment to muscle or adipose tissue. Sr values were not significantly different (P > 0.05) among STEC isolates for all assays. No correlation was found between bacterial hydrophobicity and surface charge values (previously determined) and production of surface structures, viable counts, and Sr values. STEC grown in planktonic and sessile culture seems to behave differently with respect to attachment to muscle and adipose tissue. Cells in sessile culture may have a greater potential to strongly attach to meat surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号