首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用响应面设计方法对TiAlN涂层刀具强流脉冲电子束表面后处理工艺进行优化设计,结合回归统计建立硬质合金涂层刀具的表面粗糙度、硬度以及弹性模量数学模型。此外,分别对三个数学模型进行显著性分析,以揭示输入电压、输入电流和脉冲次数对涂层刀具表面粗糙度、硬度及弹性模量的影响。结果表明,强流脉冲电子束轰击过程中的输入电压、输入电流和脉冲次数对涂层刀具的表面粗糙度、硬度以及弹性模量均具有显著影响。通过多响应值进行优化,得到了最佳工艺参数组合。经此工艺条件处理后的TiAlN刀具表面粗糙度为0.17μm、显微硬度为33.39 GPa、弹性模量为660.20 GPa;切削实验结果表明,经处理后的TiAlN涂层刀具后刀面磨损量较未经处理的下降了60%左右。  相似文献   

2.
目的研究不同后处理工艺(包括热处理、湿喷砂和刃口处理)对MT-TiCN涂层组织与刀片切削性能的影响。方法采用中温化学气相沉积技术在硬质合金刀片上制备TiCN涂层;利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪分析MT-TiCN涂层的组织形貌、相结构、硬度和弹性模量;在AISI 4340合金钢上进行车削试验。结果 MT-TiCN涂层呈柱状晶结构,涂层沿(422)晶面方向择优生长,且织构系数达5.5;涂层表面和断口平均硬度分别为26.6 GPa和30.7~31.8 GPa,平均弹性模量分别为528.6 GPa和467.7~494.4 GPa;在连续车削条件下,经湿喷砂处理的涂层刀片切削性能最佳;在低切深、低进给断续车削工况下,湿喷砂后又经热处理和刃口处理的涂层刀片使用寿命最长;湿喷砂后再进行热处理,对刀具的切削性能影响较小。结论湿喷砂和热处理对MT-TiCN涂层组织的影响较小;不同后处理工艺对涂层刀具切削性能的影响较大,这主要是因为刃口处理会减小涂层厚度同时提高涂层韧性。  相似文献   

3.
常垲硕  郑光明  李阳  程祥  刘焕宝  赵光喜 《材料导报》2021,35(16):16086-16092
采用涂层刀具高速切削TC4(Ti6-Al4-V)时,其寿命短的问题较为突出.对涂层刀具进行表面后处理可大幅提高涂层刀具的表面完整性,是延长刀具寿命的有效途径.针对高速干切削钛合金的TiAlN涂层刀具,选用湿式微喷砂处理工艺进行表面后处理,分析微喷砂处理对涂层刀具表面微观形貌、表面粗糙度、表面显微硬度、表面残余应力的影响规律,并进行高速干切削试验,深入研究微喷砂处理对涂层刀具寿命及磨损机理的影响.结果表明:合适的微喷砂处理工艺(水料混合湿式微喷砂,喷砂压强为0. 1~0. 5 MPa,喷砂时间为0~10 s,喷砂颗粒为Al2 O3 或ZrO2 颗粒)可去除涂层初始表面大颗粒、凸起等缺陷,从而改善刀具的表面形貌,但过高的喷砂参数会在涂层刀面引入凹坑、微裂纹等,增大了其表面粗糙度值.喷砂颗粒、喷砂时间主要影响颗粒撞击涂层表面时对TiAlN涂层材料的去除量,改变涂层刀面的形貌、粗糙度与残余应力,喷砂压强主要影响颗粒的冲击力度,改变表面的硬度与残余压应力.与未处理刀具相比,处理后的涂层刀具的表面完整性提升显著,稳定磨损阶段持续时间延长,刀具寿命可提升50% ,微喷砂表面处理可广泛应用于各种涂层刀具表面处理.  相似文献   

4.
为了提高火炮身管的力学硬度和弹性模量,在PCrNi3 Mo钢表面磁控溅射了TiAlN,CrAlN 2种氮化物防护层.利用激光共聚焦显微镜、X射线衍射仪(XRD)对2种溅射层的形貌及结构进行了表征,采用纳米压痕仪测试了基材与2种溅射层的硬度和弹性模量.结果表明:CrAlN层表面相对平整光滑致密,表面粗糙度较小(Ra=0.004~0.006μm),TiAlN层表面粗糙度相对较大(Ra=0.005 ~0.021μm);CrAlN层表面生成的主晶相为CrN,TiAlN层表面生成的主晶相为TiN,2种晶相分别沿(110)和(200)面呈现择优取向;CrAlN层硬度和弹性模量分别为20.39,288.8 GPa,TiAlN分别为14.51,267.70 GPa,较基材(5.57,258.00 GPa)均有显著提高,其中CrAlN层提高最为显著.  相似文献   

5.
采用强流脉冲电子束表面改性技术对TiAlN涂层刀具表面进行轰击处理。利用扫描电镜、X射线衍射仪研究轰击次数对TiAlN涂层刀具表面形貌、涂层厚度及物相组成的影响,检测TiAlN涂层的显微硬度和粗糙度,并对轰击前后涂层刀具的切削性能进行分析。结果表明:随着轰击次数的增加,涂层的厚度减小,涂层表面在微区范围内更致密、光滑,显微硬度则先小幅提高后急剧下降,而涂层的物相组成基本保持不变。与原始刀具的切削性能相比,轰击后的涂层刀具切削速率小幅提高,而刀具后刀面磨损有所下降。  相似文献   

6.
吕学鹏  涂彦坤  郑勇  董作为 《材料导报》2017,31(20):73-76, 91
采用真空烧结法制备了板状WC晶粒WC-(Co-Ni)硬质合金,通过XRD、SEM、EDS等手段研究了Ni/(Ni+Co)比对硬质合金组织和性能的影响规律。结果表明:随着Ni/(Ni+Co)比的增大,硬质合金显微组织中板状WC晶粒的比例逐渐减少,硬质相颗粒的尺寸逐渐增大且平均长厚比逐渐减小。当Ni/(Ni+Co)比过大时,硬质合金中硬质相颗粒出现了团聚现象,使其力学性能显著降低。当Ni/(Ni+Co)比为0.3和0.5时,WC-(Co-Ni)硬质合金的综合力学性能较高,这与其硬质相颗粒较细和平均长厚比较大有关。当Ni/(Ni+Co)比为0.5时,WC-(5Co+5Ni)硬质合金具有较优的综合力学性能,其抗弯强度、硬度和断裂韧性分别为2 448 MPa、90.0HRA、21.2 MPa·m~(1/2)。  相似文献   

7.
冷喷涂WC-Co涂层的组织结构和性能研究   总被引:1,自引:0,他引:1  
以微米WC-12Co、纳米WC-17Co和WC-23Co三种团聚烧结粉末为原料,进行冷喷涂沉积涂层实验,通过扫描电镜、X射线衍射仪分别分析了涂层的组织结构和相结构,运用压痕法测定了涂层的显微硬度、弹性模量和断裂韧性,并通过销-盘磨损实验测定了涂层的耐磨损性能.实验表明,三种粉末所沉积的WC-Co涂层均具有致密的组织结构,涂层保持与原始粉末相同的相结构,黏结相Co由于强烈塑性变形发生了同素异构转变,涂层组织无传统层状结构,WC硬质相发生了局部流动和再分布.对于纳米WC-Co涂层,随着黏结相含量增加,涂层硬度和弹性模量降低、断裂韧性增加,相对于316L不锈钢,冷喷涂WC-Co涂层表现出了优异的耐磨损性能,涂层磨损失效机理主要为磨粒对涂层的切削作用.  相似文献   

8.
陈锋光  柯培玲  汪爱英 《材料导报》2012,26(12):105-108
采用真空阴极电弧制备了TiAlN涂层,研究了N2气压和基体负偏压对涂层硬度的影响规律,分析了涂层的致硬机理,探讨了硬度对摩擦学性能的影响。结果表明,N2降低入射离子能量,降低增原子扩散,导致晶粒细化;基体负偏压增大入射离子能量,导致涂层致密化并依次出现(200)、(111)、(220)、(200)择优取向。TiAlN涂层的硬度受Ti、Al、N原子间键能,生长面择优取向及晶粒显微组织的影响,其中最薄弱因素起决定作用。摩擦学性能研究表明,高硬度TiAlN涂层易形成磨粒磨损,摩擦系数和磨损率高;低硬度TiAlN涂层易发生粘着磨损,摩擦系数和磨损率低。  相似文献   

9.
采用粉末冶金和真空熔炼方法制备了原子比为Ti50Al50的合金靶材,利用磁控溅射工艺在同一工艺参数下制备了TiAlN涂层,借助扫描电镜、原子力显微镜、X射线衍射仪、纳米压痕和结合强度实验,研究了溅射靶材对TiAlN涂层的形貌、结构和力学性能的影响。结果表明:粉末靶材中Ti和Al以单质相存在,Ti镶嵌于Al基体周围,熔炼靶材中形成了TiAl和Ti3Al合金化片层组织;由于两种靶材在组织结构和导热性能上的不同导致其溅射产额、靶材温度和溅射金属离子能量等都出现了明显的差异;对涂层的影响表现为,相比于熔炼靶材涂层,粉末靶材涂层的沉积速率高44%,表面粗糙度低24%,涂层表面熔滴数目和尺寸较小;粉末靶材涂层呈现Ti2AlN相等轴晶生长方式,熔炼靶材涂层由于沉积温度较高表现为Ti2AlN相和TiN相,以等轴晶和柱状晶混合生长;相结构的不同导致涂层的硬度和结合强度出现差异,粉末靶材涂层硬度为25.69 GPa,结合强度属于HF-3,熔炼靶材涂层的硬度为28.22 GPa,结合强度属于HF-5。  相似文献   

10.
为揭示热喷涂涂层在不同尺度下的力学性能,在45钢基体上制备了平均厚度为750μm的火焰喷涂NiCrBSi涂层,利用纳米压痕技术研究了不同压痕深度下涂层表/截面力学性能、弹塑性和压痕变形行为。结果表明:涂层表/截面力学性能均呈现明显的尺寸效应,硬度、弹性模量、弹塑性随压入深度增加不断降低。涂层表面表现出高弹性,其压痕弹性功与总压痕功的比值ηIT在500nm深度内达到52%,而涂层截面为40%;涂层截面具有高硬度和高模量,其纳米硬度和弹性模量在2000nm深度内比涂层表面分别高28%和33%。涂层压痕变形表现为理想塑性、凹陷、凸起和裂纹等多种特征,随着压入深度增加,涂层表/截面弹塑性差异逐渐降低,并在2500nm深度同时下降到35%。涂层单一薄层结构在不同方向具有相同的硬度和弹性模量,但随压入深度增大,压头包含的涂层体积增大,相邻薄层,特别是孔隙、裂纹、层间边界等缺陷对涂层性能的影响逐渐增强,导致涂层表/截面硬度和弹性模量的差异性随压痕深度增加不断降低。  相似文献   

11.
利用原位还原碳化反应合成的超细WC-12Co复合粉末作为原料, 分别添加1.0wt%晶粒长大抑制剂即VC、Cr3C2和NbC, 经团聚造粒和超音速火焰(HVOF)喷涂制备了超细结构的硬质合金涂层。研究了不同晶粒长大抑制剂对涂层的显微组织结构、物相、硬度、耐磨性能和耐蚀性能的影响。结果表明, 与未添加晶粒长大抑制剂涂层相比, 添加1.0wt% VC或Cr3C2制备的硬质合金涂层中WC颗粒的平均尺寸降低了约49%, 涂层硬度明显提高, 磨损速率降低了约52%~55%。添加1.0wt% NbC对制备涂层中WC颗粒尺寸的抑制作用不明显, Co粘结相中由于形成了(W, Nb)C化合物, 其耐蚀性获得显著提高, 但该化合物脆性大, 导致涂层耐磨性不及添加VC和Cr3C2制备的涂层。  相似文献   

12.
采用浆料法在硬质碳纤维毡表面制备石墨涂层,利用硅蒸镀使硅蒸汽在石墨涂层、碳纤维、基体碳表面反应生成SiC涂层。利用XRD、SEM及显微硬度计等研究了蒸镀时间对涂层微观结构、晶粒尺寸及显微硬度的影响,并分析了涂层形成过程。研究结果表明,蒸镀时间增加,表面涂层的微裂纹及孔洞减少,逐渐形成连续、致密的SiC涂层;蒸镀时间为3 h,涂层表面仅存在β-SiC;表面粗糙度低的石墨涂层作为硅蒸镀反应基体,生成的SiC晶粒较小;而表面粗糙度高的石墨涂层作为反应基体,表面涂层的显微硬度较大。  相似文献   

13.
李洪  许伟  苏一凡  林松盛  代明江  石倩 《材料导报》2021,35(14):14030-14034
金刚石涂层具有接近天然金刚石的超高硬度及耐磨性,被认为是精密加工石墨模具的理想刀具涂层材料.金刚石涂层与刀具基体间的结合力及涂层表面状态是高速干式切削加工质量及效率的关键,金刚石涂层前处理过程控制及涂层工艺是影响金刚石涂层刀具综合性能的重要因素.本工作基于热丝化学气相沉积技术,采用酸-碱-酸三步法对硬质合金材料进行前处理,在涂层沉积过程中采用大气流量及高炉压沉积工艺在刀具基体表面沉积金刚石涂层.采用扫描电镜(SEM)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线衍射光谱(XRD)对涂层微观结构及物相结构进行分析表征,利用纳米压痕仪对金刚石涂层硬度进行测试,利用喷砂试验测试金刚石涂层的抗冲刷性能,利 用石墨模具切削试验表征金刚石涂层刀具的切削性能.结果表明,金刚石涂层呈典型八面体结构,涂层与基体紧密结合、无明显孔隙,金刚石涂层刀具表面粗糙度为157 nm,sp3键含量大于98%,(涂层硬度大于90 GPa),涂层沿(111)面择优生长,抗冲刷时间大于150 s(0.5 MPa,120目),涂层刀具高速切削石墨模具2 h后,被加工面表面粗糙度小于1 μm,达到进口刀具水平.切削完成后刀具前刀面出现少量崩缺,前刀面磨损是此类刀具加工石墨模具的主要磨损形式.  相似文献   

14.
采用反应磁控溅射制备了TiAlN/VN纳米多层膜, 并使用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、纳米压痕仪和多功能摩擦磨损试验机对多层膜的微结构与力学和摩擦学性能进行了表征和分析。研究结果表明: 不同调制周期的TiAlN/VN多层膜均呈典型的柱状晶生长结构, 插入VN层并没有打断TiAlN涂层柱状晶的生长。在一定调制周期下, TiAlN/VN纳米多层膜中的TiAlN和VN层之间能够形成共格生长结构, 其硬度和弹性模量相比于TiAlN单层膜均有显著提升, 其中, TiAlN (10 nm)/VN (10 nm)的硬度和弹性模量最大增量分别达到39.3%和40.9%。TiAlN/VN纳米多层膜的强化主要与其共格界面生长结构有关。另外, TiAlN单层膜的摩擦系数较高(~0.9), 通过周期性地插入摩擦系数较低的VN层能够使得TiAlN的摩擦系数大大降低, TiAlN/VN纳米多层膜的摩擦系数最低为0.4。  相似文献   

15.
采用两步法烧结工艺制备了表面富Co-layers硬质合金和表面富Ti基硬质相层硬质合金,对比研究了氮化处理前后硬质合金表面微观形貌、生成相和力学性能的差异。研究表明:真空条件下烧结可在试样表层生成约20μm厚的Co-layers,该层中不含立方碳化物相,微观结构分析发现试样表面呈现山丘形貌且具有金属亮银色光泽,可用于修复试样表面缺陷,如微观裂纹、孔洞等,并且改善硬质合金表面韧性和提高涂层与基体之间的界面结合强度。氮化处理可在合金表面原位生成富含细晶粒的TiN相层,层厚约1μm,微观结构分析发现该层呈金色或棕色,表面较为平整。通过性能对比分析发现渗氮虽然导致试样密度小幅降低,但是可显著改善晶粒尺寸分布不均和增加表层硬质相中的微应变,能够在提高表面硬度的同时依然保持较高韧性,同时可有效改善硬质合金的刀具耐磨性和使用寿命。  相似文献   

16.
采用G200型微/纳米压痕仪,测试了不同微纳米级涂层材料的力学性能。结果表明:使用纳米压痕法能检测和表征微纳米涂层材料的硬度和弹性模量及其随涂层厚度的变化趋势,从而了解涂层的力学性能以及与基体的结合质量情况;纳米压痕法测试涂层力学性能时存在明显的表面效应,一般建议压入深度不小于20μm,以保证表面粗糙度引起的压入深度的不确定度小于5%。  相似文献   

17.
在粒径为0.5μm的超细碳化钨(WC)粉体表面包覆钴(Co)纳米颗粒获得细WC/Co,将细WC/Co、粗WC和Co粉通过球磨混合均匀,压制成型后在1420℃下真空烧结1 h,得到WC-10Co硬质合金。借助扫描电子显微镜、透射电子显微镜、万能试验机等对比研究细WC/Co和超细WC对WC-10Co硬质合金微观形貌和力学性能的影响。结果表明:相比于超细WC,细WC/Co促进合金的致密化,并形成双晶结构。添加细WC/Co和超细WC制备的硬质合金的平均晶粒度分别为2.18μm和3.57μm。细WC/Co的添加会降低晶粒生长速度并抑制细晶完全溶解,而粗晶通过缺陷辅助生长及溶解-析出生长机制生长为表面阶梯状的缺角三棱柱形;硬质合金的硬度和断裂韧度得到提升,二者分别为1131HV30和22.1 MPa·m1/2,而在1131HV30同等硬度下,其断裂韧度比线性拟合的断裂韧度高27.7%。机理分析认为,超细WC的添加会导致异常晶粒产生,不利于性能;而细WC/Co的添加能够同时形成双晶结构和均匀的钴相分布结构,降低晶粒缺陷,提升综合力学性...  相似文献   

18.
为了研究WC硬质合金表面氮化物涂层的摩擦磨损特性及其对刀具铣削性能的影响,采用物理气相沉积法(PVD)在WC硬质合金表面分别沉积了TiN、CrN和TiAlN 3种氮化物涂层。利用扫描电镜(SEM)、X射线衍射仪(XRD)、摩擦磨损试验机分析了WC硬质合金及3种氮化物涂层的组织和摩擦磨损性能。以45钢为被铣削材料,研究了WC硬质合金及3种氮化物涂层刀具的铣削性能。结果表明:氮化物涂层能有效提高WC硬质合金的表面硬度和耐磨性能,3种氮化物涂层中,TiAlN涂层的硬度最高,相比WC基体提高了26.5%,TiAlN涂层能显著提高WC硬质合金的耐磨性能,其磨损特征为较小的磨粒磨损和轻微氧化磨损。TiAlN涂层的高硬度和高耐磨性能更有利于铣削45钢,铣削过程中产生的氧化膜易覆盖在刀尖表面,起到保护刀具表面的作用,进而显著提高刀具的铣削性能。同时相比其他涂层,TiAlN涂层刀具后刀面的磨屑的黏附少,表现出较强的排屑能力,这对于提高刀具的铣削性能具有重要意义。  相似文献   

19.
王东  赵军  李安海  崔晓斌 《材料工程》2013,(9):22-26,31
采用"随机法"构建了考虑WC-Co硬质合金的Co相体积分数、晶粒平均粒径分布、晶粒形心分布以及晶粒取向角分布的微观结构模型,结合显微压痕实验的有限元模拟,提出一种基于材料微观结构的硬度预报模型。结果表明:"随机法"构建的微观结构模型较好地反映了材料的真实细观结构特征;材料的硬度受微观结构的影响较大,其中以Co相体积分数和晶粒平均粒径分布最为显著。模拟结果与实验结果吻合较好,从而证明了提出的模型能够准确地预报WC-Co硬质合金的硬度。  相似文献   

20.
采用"随机法"构建了考虑WC-Co硬质合金的Co相体积分数、晶粒平均粒径分布、晶粒形心分布以及晶粒取向角分布的微观结构模型,结合显微压痕实验的有限元模拟,提出一种基于材料微观结构的硬度预报模型。结果表明:"随机法"构建的微观结构模型较好地反映了材料的真实细观结构特征;材料的硬度受微观结构的影响较大,其中以Co相体积分数和晶粒平均粒径分布最为显著。模拟结果与实验结果吻合较好,从而证明了提出的模型能够准确地预报WC-Co硬质合金的硬度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号