首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
并网变换器作为分布式发电系统与电网间的连接枢纽,并网电流质量是其关键,采用LCL滤波器可用较小的电感量有效地降低电流谐波,但易引起谐振。同时,随着分布式发电系统的增大,公共接入点(PCC)的电网阻抗使得LCL滤波器固有谐振频率发生移动,更不利于电流系统的控制。而已有的大部分研究并没有重视电网阻抗的影响。针对上述问题,提出了一种基于公共接入点电压反馈的有源阻尼控制策略,该策略不需额外地增加传感器。分析了反馈环节参数对所提策略阻尼效果的影响。仿真验证了该策略的有效性与可行性。  相似文献   

2.
并网逆变器LCL型滤波器的设计及有源补偿   总被引:2,自引:2,他引:0       下载免费PDF全文
在并网逆变系统中,LCL型输出滤波器能够很好地抑制功率开关管高频开通与关断产生的大量高次谐波,因此备受关注。针对LCL型输出滤波器,阐述了滤波器电感L及电容c参数取值原则及设计步骤。由于LCL输出滤波器是三阶系统,易引起输出振荡,为增大阻尼,消除振荡,详细分析了一种基于电容电流反馈的有源阻尼法。最后通过仿真及一台以DS...  相似文献   

3.
带LCL滤波器的并网逆变器单电流反馈控制策略   总被引:4,自引:0,他引:4  
LCL滤波器广泛应用于并网逆变器系统中,其对高次谐波具有良好的衰减作用:但LCL滤波器为低阻尼三阶系统,容易发生谐振.传统的有源阻尼方法,通过对电容电流进行采样并反馈,能够抑制系统振荡,但增加了传感器数量.提出一种单电流反馈控制策略,其采用入网电流两次微分的反馈方法,增加了系统阻尼,从而有效地抑制LCL滤波器的谐振尖峰,保证系统的稳定性;同时其对系统参数不敏感,并且不增加额外的传感器,是一种低成本高可靠性的控制策略.文中推导该控制策略下的系统传递函数,并分析系统的稳定性.最后,通过仿真和实验,验证提出的控制策略的可行性与有效性.  相似文献   

4.
LCL并网变流器反馈阻尼控制方法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
LCL滤波器在提高并网变流器电流质量的同时,却不可避免地引入了谐振和稳定性的问题。在讨论和研究了不同侧电感电流反馈控制方法的基础上,针对并网侧电感电流反馈,提出了通过协调优化数字控制系统中的采样频率与谐振频率的比值关系,从而实现并网变流器的无阻尼控制的方法。针对并网变流器侧电感电流反馈控制方式,提出了利用改进的高通滤波器来提取谐振分量进行滤波阻尼的控制方法。这两种LCL滤波器阻尼控制方法,均不需要在主回路中增加额外的传感器,设计过程简单、可靠性高,便于工程实际应用。最后,通过实验结果验证了理论分析的正确性以及控制方法的可行性。  相似文献   

5.
基于并网电流反馈的有源阻尼方法常用来抑制LCL型并网逆变器的谐振尖峰,现有方法会放大高频噪声、降低并网电流质量。因此提出了基于负低-高通滤波器的并网电流反馈新型有源阻尼方法,在抑制谐振尖峰的同时,也降低了对高频信号的增益,进一步提高并网电流质量。采用极点配置法,围绕系统的稳定裕度以及有源阻尼效果设计新型有源阻尼的参数;随后讨论了LCL参数和电网阻抗变化时新型有源阻尼控制系统的鲁棒性。仿真与实验结果证明,该方法使得控制系统对高频噪声有更好的抑制作用,在不同的工况下均具有良好的稳定裕度,在电网阻抗变化时下依然可以有效抑制谐波电流。  相似文献   

6.
LCL滤波器在大容量、低开关频率的并网逆变器系统中已广泛应用,但LCL容易发生谐振,特别是在多逆变器并联的新能源电力系统中。本文推导了LCL谐振的公式,根据并网电流谐振时滤波器网侧电感与电网等效电感为串联的特性,结合LCL的结构,提出采用网侧电感电压一阶微分和入网电流的双闭环控制策略,在不增加传感器数量条件下,网侧电感电压一阶微分反馈内环增加了系统阻尼,有效抑制了LCL的谐振;电流外环实现了对入网电流的直接控制,可保证较高的功率因数,提高逆变器的利用效率。与电容电流反馈控制的仿真对比结果表明,该控制策略在逆变器并网的环境中有更好的抑制电流谐振的效果,实现对并网电流质量的改善。  相似文献   

7.
并网逆变器输出采用LCL滤波器接口可提高对并网电流高次谐波的衰减能力,但LCL滤波器结构为三阶无阻尼系统,存在谐振尖峰,给控制器设计带来困难。对此,提出了一种将分裂电容电流反馈控制与重复控制相结合的方法,通过反馈两分裂电容中间电流使受控系统由三阶系统转换为一阶系统,消除了谐振尖峰,改善了闭环控制系统性能,且该方案在保留了重复控制能有效抑制周期性扰动优点的同时,简化了重复控制补偿器的设计。对该方案控制系统进行了详细的分析和设计,在2 kW样机上进行了实验,证明了该方案的有效性。  相似文献   

8.
一种LCL滤波器有源阻尼策略与设计方法   总被引:1,自引:0,他引:1  
针对LCL滤波器的谐振峰特性会导致系统不稳定、中大功率变流器中无源阻尼方法的阻尼损耗会引起严重发热问题,根据LCL滤波器的传递函数和电容支路电流对系统阻尼的影响,提出一种电容支路电流反馈有源阻尼策略和反馈参数设计方法。研究了电容支路电流反馈有源阻尼策略对系统谐振峰增益和开关频率处增益的影响,将该有源阻尼策略和无源阻尼法进行了对比研究,得出电容支路电流反馈有源阻尼控制策略反馈参数的设计方法。对带有LCL滤波器的并网逆变器进行了仿真研究,仿真结果表明这种有源阻尼策略能有效抑制LCL滤波器的谐振峰,降低输出电流在谐振频率处谐波,增加系统的稳定性。  相似文献   

9.
LCL型滤波器具有比单L滤波器更好的滤波效果,但是其容易使系统引发谐振,并导致系统不稳定。在基于LCL型滤波器的并网逆变器中,为了保证系统的稳定性,通常会采取相关的有源阻尼措施。目前常用的电容电流比例反馈有源阻尼需要引入额外的高精度电流传感器导致系统成本的增加,因此提出了一种基于并网电流反馈的新型有源阻尼方法。该阻尼环节能够给阻尼环的开环传递函数提供一定的相位偏移从而使得阻尼内环稳定,并达到良好的阻尼效果。与无阻尼单并网电流反馈控制相比,引入所提有源阻尼能够降低有效阻尼区间的频率下限,提高了系统对电网阻抗变化的鲁棒性。文章还围绕系统的稳定裕度以及稳态精度探讨了阻尼环节参数与电流控制器参数的设计方法,并给出了简单便捷的参数设计步骤。最后,仿真和实验结果验证了所提方法的有效性。  相似文献   

10.
LCL滤波的并联有源滤波器的虚拟阻尼控制   总被引:4,自引:4,他引:0  
陈国柱  赵文强 《高电压技术》2010,36(7):1827-1832
为实现LCL滤波器的稳定控制而不额外增加系统损耗,提出了基于虚拟阻尼思想的有源滤波器输出并网电流控制策略,通过并网侧电感电流外环控制器的引入充分提高了系统的鲁棒性,即使电网存在畸变系统也能有效工作,而且可以有效控制补偿电流的精度,通过电容电流或电容电压内环来实现系统的稳定。该控制方法具有较好的谐波补偿精度和开关纹波衰减率,系统具有良好的稳态和动态性能。仿真结果证明了所提出的控制策略的正确性。  相似文献   

11.
LCL滤波器相比于单电感滤波器,由于其较强的谐波衰减能力以及更小的电感体积,通常与整流器输出端相连,使电网电流波形更加平滑,但LCL滤波器存在固有的谐振问题,会对系统稳定运行造成不利影响。本文提出一种无传感器有源阻尼控制策略,将估计的电容电流通过比例环节引入到电压给定,进而实现有源阻尼控制。该控制方法在不增加额外传感器的情况下能很好地实现谐振抑制,降低电流总畸变率,同时增加了系统稳定性。仿真结果验证了该控制方法的可行性。  相似文献   

12.
LCL滤波并网逆变器的控制策略   总被引:3,自引:0,他引:3  
把LCL滤波器作为电压源型并网逆变器与电网的接口已受到广泛关注。与单电感L滤波器相比,利用电感值较小的LCL滤波器对入网电流的高次谐波具有显著的衰减效果,特别是在低开关频率的大功率并网逆变系统应用中更具明显优势,但是仅采用直接入网电流控制时,LCL滤波器接口的并网逆变器系统存在稳定性问题。该文采用电网侧电感电流和逆变侧电感电流双闭环控制策略对并网电流进行直接控制,电网侧电感电流作为外环更容易抑制并网电流的谐波因素,且可以直接控制入网电流的单位功率因数,采用逆变器侧电感电流作为内环可以增加系统阻尼,从而可抑制系统振荡,增加系统稳定性。对该方案进行系统建模,并深入分析了滤波器参数、控制器参数及系统稳定性之间的精确量化关系。仿真和实验结果表明,该控制策略既可有效抑制入网电流谐振和实现进网电流的高功率因数运行,同时又具有良好的稳态和动态性能。  相似文献   

13.
PDFI控制下单相光伏并网逆变器的混合阻尼控制策略   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的比例积分(PI)控制由于具有一定的稳态误差,无法实现对并网电流快速精确的控制,光伏系统并网以后所引入的电网电感对LCL滤波器的阻尼策略也有着不可忽略的影响。为了解决上述问题,提出了一种PDFI控制下单相光伏并网逆变器的混合阻尼控制策略。该策略介绍了比例延时反馈积分(PDFI)控制,在原有的PI控制上加上简单反馈电路,实现了并网电流的无稳态误差控制。同时分析了以阻尼系数为研究对象的混合阻尼控制,改善了电网电感对LCL滤波器的阻尼影响。理论分析、实例仿真的结果表明,该控制策略下,系统能够稳定运行,并网电流实现了精确控制,并且对电网电感具有良好的适应性。  相似文献   

14.
考虑并网逆变器PWM调制的谐波源特性,针对多机并网逆变系统中LCL滤波器与电网阻抗耦合所引起的谐波增大甚至谐振的问题进行建模,分析其谐振机理.在逆变器电流环控制中引入电容电压反馈作为有源阻尼,使多机并网时逆变器输出电流满足并网条件.仿真对比加入有源阻尼前后多机并网的效果,证明所用的控制策略能削弱并网点电压和电流的谐振,改善并网环境.  相似文献   

15.
LCL型并网逆变器采用电容电流反馈有源阻尼在弱电网下进行并网电流控制时,如果系统环路谐振频率高于1/6的采样频率,数字控制延时会导致并网逆变器在较宽范围变化的电网阻抗影响下鲁棒性较差甚至失稳。通过分析指出,电容电流反馈有源阻尼环路可等效为并联在滤波电容两端的虚拟阻抗Zeq(s),表现出的负阻特性是造成系统失稳的主要原因。鉴于此,提出一种采用负一阶惯性环节进行电容电流反馈有源阻尼的鲁棒性方法,在电容电流阻尼环路中引入惯性环节,利用频率稳定性分析对所提方法进行详细论述,并给出相关参数的设计过程。理论分析表明,该方法可保证Zeq(s)在LCL滤波器谐振频率有效范围内始终处于正阻特性范围,不仅提高系统的稳定裕度,并网系统的谐波谐振也得到抑制。此外,该方法具有较好的灵活性,当采用电容电压反馈有源阻尼控制并进行锁相时,可节省一组电流传感器的使用。最后,通过实验验证了所提方法的有效性。  相似文献   

16.
并网时采用LCL型滤波器相对于L型滤波器在同样谐波标准以及比较低的开关频率的条件下,能够采用较小的电感设计,减少了系统的体积和降低损耗。但LCL型滤波器由于电容支路的加入也使电压源型逆变器的控制系统由一阶变为三阶,因此设计相应的拓扑结构,针对该拓扑结构,在两相静止坐标系下建立数学模型,相对于两相旋转坐标系的建模而言,其避免了旋转坐标系下建模所导致的电流交叉耦合问题,因此整个系统的控制过程得到简化。最后,采用电容电流及并网电流双电流闭环的控制策略,通过反馈电容电流使系统谐振得到抑制,并采用基于期望系统开环对数频率特性的方法来有效地设置系统参数,且考虑参数的变化对系统稳定性的影响,通过仿真验证了该控制方法的可行性,且通过该方法可获得高功率因数的并网电流。  相似文献   

17.
单相LCL并网逆变器电流控制综述   总被引:3,自引:0,他引:3       下载免费PDF全文
并网逆变器采用LCL滤波器方式的高频滤波效果优于单电感滤波器,但是由于电容支路的引入,将明显增加控制难度.就采用LCL滤波器的并网逆变器基本控制策略而言,可以大体分为三种:采用逆变器侧电感电流反馈的间接电流控制策略,采用电网侧电感电流反馈的直接电流控制策略,以及采用部分逆变器侧电感电流和部分电网侧电感电流反馈的混合控制...  相似文献   

18.
相较于单L滤波器,LCL滤波器可在有效滤除高次谐波的同时减小滤波器的体积、降低滤波器的功率损耗。为解决LCL滤波器的谐振以及网侧电感电流畸变等问题,提出了在单电感型并网电流控制策略的基础上引入网侧(或逆变器侧)电感电流修正量的控制策略。因在引入电流修正量时,须在非反馈侧安装电流传感器,为避免添加电流传感器带来的成本问题,利用二维状态观测器估计网侧电感电流,在不增加设备成本基础上有效观测网侧电感电流。仿真和实验结果验证了所提策略的可行性。  相似文献   

19.
LCL滤波器对开关谐波具有很强的抑制能力,被广泛应用于并网逆变器中。为了抑制LCL滤波器的谐振尖峰,通常采用电容电流反馈进行有源阻尼。但是采用数字控制时,反馈信号的采样和控制算法的计算会引入一拍滞后的延时,改变有源阻尼的特性,使得控制系统对电网阻抗的鲁棒性较差;同时,该延时还会降低系统的相位,严重限制并网电流环的环路增益和带宽的提高。为此,提出双采样模式的实时运算方法,完全消除了有源阻尼内环和并网电流外环的计算延时,因此可大大提高并网逆变器的系统鲁棒性和电流控制性能。同时,与传统方法相比,双采样模式实时运算方法还可延长采样时刻与开关管开关时刻之间的时间间隔,从而有效地避免了高频开关噪声对采样信号的影响,提高了逆变器的抗噪性能。以单相LCL型并网逆变器为例,进行实验验证。实验结果证明了所提出的双采样模式实时运算方法是有效的。  相似文献   

20.
针对LCL型并网逆变器固有谐振属性容易引起系统谐振,影响系统稳定性的问题,采用无需增添额外传感器的并网电流反馈有源阻尼(GCFAD)法抑制谐振,并引入高通滤波器(HPF)抑制传统GCFAD中二次微分环节对高频谐波电流的放大效应。为应对电网阻抗变化导致谐振频率偏移时阻尼参数难以根据系统变化进行实时调节,提出一种基于线性自抗扰的新型并网电流反馈模糊自适应有源阻尼控制策略(FHPF-LADRC),进一步提高系统的鲁棒性。使用频域分析法分析新型有源阻尼控制对抑制系统谐振峰值和高频谐波衰减的效果,通过仿真结果验证了新型有源阻尼控制策略不仅有效提高系统阻尼效果,还增强系统稳定性和谐波抑制力,具有较好的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号