首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究三维电极法对难降解有机物硝基苯的氧化能力,确定三维电极法处理硝基苯废水的工艺条件.方法 以自配硝基苯水样为处理对象,采用自制反应器,通过试验研究分析pH值、进水硝基苯质量浓度、电压、反应时间、电解质投加质量等对三维电极法处理硝基苯废水效果的影响.结果 三维电极法对硝基苯有较高的去除率,硝基苯的去除率可达到89.21%.pH值、进水硝基苯质量浓度、电压、反应时间、电解质投加质量对处理效果均有较大影响.结论 硝基苯的质量浓度在250 mg/L时,Na2SO4电解质投加质量为1 g时,三维电极法能够有效去除硝基苯,最佳反应条件:pH值为3,电压为5,反应时间为45 min,极板间距为5 cm.  相似文献   

2.
活性炭载Fe2+三维电极法处理染料废水   总被引:1,自引:0,他引:1  
采用以载Fe2+活性炭为第三极的三维电极法电催化氧化处理酸性大红模拟废水,并对该体系与二维电极法、三维电极法去除废水COD及色度的效率进行对比,同时考察了活性炭投加量及载Fe2+活性炭使用寿命.结果表明:载Fe2+活性炭三维电极法处理效率明显高于二维电极法和三维电极法,在适宜的条件下,该体系对酸性大红模拟废水的脱色率和COD去除率分别可达95%、85%以上,表现出良好的三维电极电解、Fenton试剂、吸附的协同效应.  相似文献   

3.
采用以载Fe^2+活性炭为第三极的三维电极法电催化氧化处理酸性大红模拟废水,并对该体系与二维电极法、三维电极法去除废水COD及色度的效率进行对比,同时考察了活性炭投加量及载Fe^2+活性炭使用寿命。结果表明:载Fe^2+活性炭三维电极法处理效率明显高于二维电极法和三维电极法,在适宜的条件下,该体系对酸性大红模拟废水的脱色率和COD去除率分别可达95%、85%以上,表现出良好的三维电极电解、Fenton试剂、吸附的协同效应。  相似文献   

4.
三维电极法处理印染废水的实验研究   总被引:4,自引:0,他引:4  
研究了三维电极对模拟印染废水的处理.在实验中,选用涂膜活性炭作为填充粒子,以醋酸纤维素作为涂膜材料,复极性槽选用的电压为20 V.通过实验,发现三维电极对色度的去除率为87.50%、对CODcr的去除率为77.03%.  相似文献   

5.
采取三维电极法处理钻井废水,考查了活性炭吸附作用、电解作用对COD去除率的影响,初步探索了三维电极法处理钻井废水的降解机理。利用正交实验分析了不同影响因素对COD去除率的影响程度。实验结果表明:三维电极系统对钻井废水的处理是电解和吸附作用协同效应的结果;活性炭感应荷电时处理效果最好;各因素对CODCr,去除率的影响程度为初始CODCr浓度〉电解时间〉pH值〉电流密度〉电导率;最优水平组合为A4B4C2D3E4。  相似文献   

6.
以提高电解处理工艺的效率、降低处理成本、易于实现工业化为目标,筛选出适合硝基苯废水处理的高效电极材料,考察了电解法处理模拟硝基苯废水的各种影响因素,并在此基础上对电解法降解模拟硝基苯废水的过程进行了初步探讨。研究结果表明:以铁作电极,在电极间距为5 mm,电流密度为10 mA/cm2,硫酸钠投加量为1.5 g/L,水板比为12 m-1,电解时间为30 min的条件下对硝基苯模拟废水进行电解处理,硝基苯去除率可达90%以上;在铁电极电解作用下,硝基苯的降解78%是由氧化等作用去除,22%是在电还原作用下被转化为可生化和低毒的苯胺。  相似文献   

7.
目的比较三维电极法与二维电极法对苯酚废水的处理效果.方法采用自制三维电极和二维电极反应器,以苯酚水样为处理对象,通过试验分析两种方法中各因素对苯酚废水处理效果的影响.结果在相同条件下,三维电极反应器对苯酚的去除率比二维电极反应器对苯酚的去除率高10%以上,对pH值的要求低于二维电极,可以处理质量浓度相对较高的苯酚废水,反应电压和电解时间、电解质投加量等因素均低于二维电极法.结论三维电极法极大地节约了处理成本,处理效果优于二雏电极法.  相似文献   

8.
微电解-电解预处理硝基苯废水的研究   总被引:2,自引:0,他引:2  
采用微电解-电解工艺处理硝基苯废水,考察初始pH值、曝气、电流密度、电极间距等因素对硝基苯和CODCr去除率的影响.结果表明:在曝气条件下,初始pH 3.0、铁屑用量200 g/L、铁炭微电解反应1 h后,硝基苯和CODCr去除率分别为63.2%和22.1%;然后采用电解法处理,在电流密度为5 mA/cm2、电极间距为2 cm、电解1 h后,硝基苯和CODCr去除率分别提高至92.3%和45.2%;废水B/C由原来的0.19上升到0.36.因此,微电解-电解工艺是一种有效的硝基苯废水预处理手段.  相似文献   

9.
研究了利用累托石层孔材料处理化学耗氧量(COD)为1 000~4 000 mg/L的硝基苯废水.在pH为 7.4~9.0, 搅拌强度为200 r/min;搅拌时间为60 min时,废水中还原剂FE 用量为1 g/L; 累托石层孔材料投加量为15 g/L时,COD一次去除率达70%以上.处理水经累托石层孔材料二次吸附,COD去除率达92%以上.COD值降至96 mg/L,而且该累托石层孔材料可经脱水再生.  相似文献   

10.
电化学与生物法相结合的工业废水处理工艺   总被引:1,自引:0,他引:1  
采用三维电极电化学氧化和生物处理相结合的方法来处理难降解的印染废水.电解实验以不锈钢作为电解槽的阴、阳极,活性炭作为粒子电极,利用正交试验确定了电化学反应的最佳条件.由实验结果可知,在电流密度为60 mA/cm2,活性炭投加量为40 g,主电极极间距为7 cm的条件下电解60 min后,将电化学氧化后的废水再进行生物处理,废水中的COD去除率可达85%~87%,脱色率达到82%~92%.  相似文献   

11.
在常温下采用移动床生物膜反应器处理低C/N比废水.结果显示:在填料填充比为40%、进水氨氮质量浓度为25 mg/L条件下,出水氨氮质量浓度基本稳定在4 mg/L左右,氨氮去除率在80%以上,硝化效果突出;进水C/N不足1时,TN及COD去除率分别能达到55%、60%以上,说明移动床生物膜反应器用于处理极低C/N废水具有良好效果.  相似文献   

12.
研究了生物质灰(FA)去除热磨机械浆(TMP)废水中有机物的工艺条件,利用响应面Optimal Design建立数学模型,考察了FA质量浓度、温度和时间等影响因素对处理效果的影响。结果表明,FA处理TMP废水效果明显,建立的浊度、COD和木质素去除率的模型,拟合情况良好,可预测任意期望值的去除率。增加FA用量、提高处理温度、延长处理时间有助于浊度、COD和木质素去除率的提高。FA处理TMP废水的最佳处理条件为:FA 100g/L,处理温度25℃,处理时间60min。此条件下处理的TMP废水,浊度为27.60NTU,COD为0.44g/L,木质素和半纤维的质量浓度分别为0.04和0.01g/L;浊度、COD和木质素去除率分别为96.2%、79.3%和95.4%。  相似文献   

13.
Fenton氧化预处理苯胺废水的试验研究   总被引:2,自引:0,他引:2  
研究采用Fenton试剂预处理苯胺生产废水。以废水的COD去除率和苯胺去除率为指标,通过单因素试验对Fenton试剂氧化有机物的影响因素进行了分析。结果表明:在反应初始pH值为3.5、H2O2投加量为0.3ml/l、FeSO4·7H20投加量为0.4g/L、反应时间为80min的条件下,COD和苯胺的去除率分别达到54.8%和70.3%,改善了废水的可生化性,为后续的生化处理提供了有利条件。  相似文献   

14.
研究了利用累托石层孔材料处理化学耗氧量(COD)为1000-4000mg/L的硝基苯废水,在pH为7.4-9.0,搅拌强度为200r/min;搅拌时间为60min时,废水中还原剂FE用量为1g/L;累托石层孔材料投加量为15g/L时,COD一次去除率达70%以上,处理水经累托石层孔材料二次吸附,COD去除率达92%以上,COD值降至96mg/L,而且该累托石层孔材料可经脱水再生。  相似文献   

15.
微波催化载铁GAC处理乳化油废水研究   总被引:2,自引:0,他引:2  
以不同铁离子附载量的颗粒活性炭(GAC)在微波条件下对乳化油废水进行处理,通过正交试验,讨论了微波催化氧化处理乳化油废水的影响因素,并针对油去除率探讨了乳化油废水催化氧化动力行为.结果表明,微波作用时间是乳化油废水处理效果的主要影响因素,最佳工艺条件为:GAC上Fe离子附载量为33.32 mg/g、微波处理功率为720 W、微波处理时间为45 min,出水COD值及油含量达到排放标准.在乳化油废水的微波催化氧化处理过程中,油去除率与处理时间的关系满足一级动力学方程.  相似文献   

16.
以Ti/Fe层柱累托石为粒子电极,利用多相三维电极技术,对含硝基苯废水进行了电催化降解的研究.实验结果表明,质量浓度为150 mg·L-1左右的含硝基苯废水在20 V电压下经1.5 h的电催化降解,硝基苯去除率可达97.75%,COD去除率达80.66%.考察了Ti/Fe层柱累托石的加入量、电解槽电压、底物的浓度、pH值等因素对硝基苯及COD去除率的影响.  相似文献   

17.
本文主要研究了骨炭吸附除氟的最佳工艺条件:当投药量为6g/L,在pH=7,反应时间为60min,T=15℃的条件下,未改性骨炭对氟离子初始浓度为10mg/L的模拟废水的处理率达到81.2%;采用硫酸铝对骨炭进行改性,当投药量为6g/L,在pH=6,反应时间为60min,T=15℃的条件下,能使氟离子初始浓度小于10mg/L的废水出水小于1mg/L,处理氟离子初始浓度为10mg/L的废水去除率达到92.2%。  相似文献   

18.
Ti/Fe层柱累托石电催化降解硝基苯废水的研究   总被引:1,自引:0,他引:1  
以Ti/Fe层柱累托石为粒子电极,利用多相三维电极技术,对含硝基苯废水进行了电催化降解的研究.实验结果表明,质量浓度为150 mg·L-1左右的含硝基苯废水在20 V电压下经1.5 h的电催化降解,硝基苯去除率可达97.75%,COD去除率达80.66%.考察了Ti/Fe层柱累托石的加入量、电解槽电压、底物的浓度、pH值等因素对硝基苯及COD去除率的影响.  相似文献   

19.
针对某难处理高浓度乳化液废水,提出了隔油–破乳–Fenton氧化–混凝联合处理工艺.试验结果表明:乳化液废水静浮20 min除去上层浮油,在废水pH值8.0,PAC投加量8.0 g/L,0.1‰PAM投加量10 mL/L的条件下破乳效果较好.废水继续通过Fenton试剂氧化及混凝沉降处理,当Fenton氧化初始pH值3.5,H2O2(30%)投加量12 mL/L,[H2O2]/[Fe2+]=4∶1,一次性投加FeSO4·7H2O,反应时间45 min及混凝沉降pH值8.0,混凝剂投加量0.3 g/L时,处理效果令人满意.采用该工艺处理高浓度乳化液废水,其COD去除率为99.91%,浊度去除率为98.96%,石油类去除率为99.97%,处理后水质达到《污水综合排放标准》(GB8978-1996)二级标准.  相似文献   

20.
利用外加电压强化Fe/活性炭(GAC)内循环体系处理活性红333染料废水,探讨了曝气量、回流流速、固液比和停留时间(HRT)等对COD去除率和脱色率的影响,确定了该体系的最佳工艺参数.结果表明:在曝气量为80.0 L/h、回流流速为16.0 L/h、固液比为25%和停留时间为8 h等条件下,活性红333的COD去除率和脱色率分别达到52.4%和78.7%;在附加9.0 V直流电压后,其COD去除率和脱色率可分别提高至81.8%和99.2%,表明附加适量电压能够强化Fe/GAC体系降解染料分子的能力,呈现处理的高效性.反应动力学分析表明,强化铁活性炭内循环体系处理含盐染料废水去除COD的过程基本符合二级反应动力学规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号