首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water quality (WQ) in many Great Lake tributaries has been degraded (increased nutrient and sediment concentrations) due to changes in their watersheds, resulting in downstream eutrophication. As part of the Great Lakes Water Quality Agreement, specific goals were established for loading of specific constituents (e.g., phosphorus). In 2010, the Great Lakes Restoration Initiative was launched to identify problem areas, accelerate restoration efforts, and track their progress. In 2011, the U.S. Geological Survey established a monitoring program on 30 tributaries to the lakes, representing ~ 46% of the U.S. draining area and the spectrum of land uses. Discrete measurements of nutrients and suspended sediment, and continuous measurements of flow and WQ surrogates (turbidity, temperature, specific conductance, pH, and dissolved oxygen) are being collected in these tributaries to document their WQ and estimate continuous (5-min) loading. To estimate loadings, two regression models were developed for each constituent for each site: one using continuous flow and a seasonality factor; and one using flow, seasonality, and continuous surrogates. Variables included in the final models for each constituent were chosen from the explanatory variables that worked “best” for all sites. In computing loads, when continuous surrogate data were unavailable for short periods, loads were computed using the flow and seasonality models. Prediction intervals for all loads were calculated using results from both models. These results provide a better understanding of short-term variability and long-term changes in loading affecting the environmental health of the Great Lakes than traditional regression techniques that employ only flow and seasonality parameters.  相似文献   

2.
A recent empirical model of glacial-isostatic uplift showed that the Huron and Michigan lake level fell tens of meters below the lowest possible outlet about 7,900 14C years BP when the upper Great Lakes became dependent for water supply on precipitation alone, as at present. The upper Great Lakes thus appear to have been impacted by severe dry climate that may have also affected the lower Great Lakes. While continuing paleoclimate studies are corroborating and quantifying this impacting climate and other evidence of terminal lakes, the Great Lakes Environmental Research Laboratory applied their Advanced Hydrologic Prediction System, modified to use dynamic lake areas, to explore the deviations from present temperatures and precipitation that would force the Great Lakes to become terminal (closed), i.e., for water levels to fall below outlet sills. We modeled the present lakes with pre-development natural outlet and water flow conditions, but considered the upper and lower Great Lakes separately with no river connection, as in the early Holocene basin configuration. By using systematic shifts in precipitation, temperature, and humidity relative to the present base climate, we identified candidate climates that result in terminal lakes. The lakes would close in the order: Erie, Superior, Michigan-Huron, and Ontario for increasingly drier and warmer climates. For a temperature rise of T°C and a precipitation drop of P% relative to the present base climate, conditions for complete lake closure range from 4.7T + P > 51 for Erie to 3.5T + P > 71 for Ontario.  相似文献   

3.
Egg quality (size, energy density) is important in determining early survival of birds. Here, we examine temporal (1981–2019) trends in herring gull (Larus argentatus) egg volume and energy density at breeding colonies on all five Laurentian Great Lakes. Temporal declines in egg volume were observed at 4/6 colonies on the upper Great Lakes (Lakes Superior, Michigan, Huron). On the lower Great Lakes (Lakes Erie, Ontario, and connecting channels) egg volume declined at 3/8 colonies and increased at one site. Egg energy density (kJ/g of egg contents) declined at 4/6 upper Great Lakes colonies and at 2/8 lower Great Lakes colonies. All of the upper Great Lakes colonies showed declines in either egg volume or energy density, or both, and these declines were related to dietary markers in eggs (fatty acids, stable nitrogen and carbon isotopes). On the lower Great Lakes and connecting channels, declines in egg volume or energy density were related to dietary endpoints in 3/5 instances. An information-theoretic approach indicated that trends in egg volume were best explained at the colony level while egg energy density trends were best explained by lake of origin. Diet-related declines in herring gull egg quality are likely a reflection of broad-scale ecosystem changes limiting aquatic food availability for gulls, particularly on the upper Great Lakes. These changes may be contributing to population declines in herring gulls and other surface-feeding aquatic birds. This study highlights the value of long-term monitoring of wildlife for identifying ecosystem change.  相似文献   

4.
A study of changes in hydro-climatology of the Great Lakes was performed incorporating the nonparametric Mann–Kendall trend detection test and a recently developed Bayesian multiple change point detection model. The Component Net Basin Supply (C-NBS) and its components (runoff, precipitation, evaporation) as well as water levels of Great Lakes were analyzed for gradual (i.e. trend type) and abrupt (i.e. shift type) nonstationary behaviors at seasonal and annual scales. It was found that the C-NBS experienced significant upward trends only in the lower Great Lakes (Erie, Ontario) during the summer portion of the year. At an annual scale upward trends were observed only in Lake Ontario. Change point analysis suggested an upward shift in Great Lakes C-NBS in the late 1960s and early 1970s. A combination of gradual and abrupt change analysis of Great Lakes water levels indicated a common upward shift along with a change in trend direction around the early 1970s. It was also found that precipitation and runoff are on a plateau and in some cases on a decreasing course following an increasing trend in the early twentieth century. Results obtained from this study show that the hydro-climatology of Great Lakes is characterized by nonstationary behavior. Changes in this behavior have caused the Great Lakes water levels to decrease during the last few decades. This study provides valuable insights into the nature of the nonstationary behavior of hydro-climatic variables of Great Lakes and contributes useful information to the future water management planning.  相似文献   

5.
Plastic pollution is ubiquitous in freshwater systems worldwide, and the Laurentian Great Lakes are no exception. We conducted a systematic review to synthesize the current state of the literature on plastic pollution, including macroplastics (>5 mm) and microplastics (<5 mm), in the Great Lakes. Thirty-four publications were used in our systematic review. We found ubiquitous contamination of microplastics in surface water, with maximum abundances exceeding those in ocean gyres. There are also high levels of plastic contamination reported across benthic sediments and shorelines of the Great Lakes. Citizen science data reveals macroplastic across Great Lakes shorelines, with more than three million pieces of plastic litter recorded over a span of three years. We completed a second systematic review of plastic pollution and its impact on freshwater ecosystems in general to inform how plastic in the Great Lakes may impact wildlife. Among studies published in the literature, we found 390 tested effects, 234 (60%) of which were detected and 156 (40%) of which were not; almost all of the freshwater effects (>98%) were tested on microplastics. Based on a subset of these papers, we found that the shape and size of a particle likely affects whether an effect is detected, e.g., more effects are detected for smaller particles. Finally, we identify gaps in scientific knowledge that need to be addressed and discuss how the state of the science can inform management strategies.  相似文献   

6.
A database of nearly 500 analyses of perchlorate in water samples from the Laurentian Great Lakes (LGL) watershed is presented, including samples from streams, from the Great Lakes and their connecting waters, with a special emphasis on Lake Erie. These data were assessed to test an earlier hypothesis that loading of perchlorate to the LGL watershed is relatively uniform. Higher perchlorate concentrations in streams in more developed and urban areas appear to indicate higher rates of loading from anthropogenic sources in these areas. Variable perchlorate concentrations in samples from Lake Erie indicate transient (un-mixed) conditions, and suggest loss by microbial degradation, focused in the central basin of that lake. Interpretation of the data included estimation of annual loading by streams in various sub-watersheds, and simulations (steady state and transient state) of the mass balance of perchlorate in the Great Lakes. The results suggest uneven loading from atmospheric deposition and other sources.  相似文献   

7.
Invasive, aquatic organisms have entered the North America Great Lakes from ships' ballast water, often originating from Europe. Current approaches for preventing the introduction of such organisms in ballast water include ballast water treatment (BWT) or ballast water exchange (BWE). This paper examines BWE, which is conducted in (1) waters >200 nautical miles (nm) from shore, or (2) waters >50?nm from shore and >200?m deep. We used historical records of ships transiting from Europe to the Great Lakes during one year (2014) to determine the duration (in days) that ships were within waters that met the criteria for BWE. Ship paths were classified based upon transitions between location-assigned “states” (e.g., from European waters across the North Atlantic Ocean to North America), and from these state transitions, four types of routes were identified. On average, ships sailing these routes had between 3.5 and 4.7 d to perform BWE in areas >200?nm from shore and 4.7 to 6.2 d when >50?nm from shore and >200-m deep water. Conducting BWE in daylight hours, if deemed necessary for safety, shortened the time window for BWE, especially in winter months, by approximately 50–70%. The state “machine” approach could, in the future, be used to identify ships from specific regions (e.g., ports within waterways at high risk of harboring potentially invasive species). Reshaping the definition of regional boundaries based upon time-of-year, water temperature, or other variables would further refine the ability to identify high-risk transits.  相似文献   

8.
The Great Lakes form the largest freshwater island system in the world and provide breeding habitat for a large proportion of the continental population of double-crested cormorants (Phalacrocorax auritus). Here, cormorants have a high profile due to conflicts with humans; by 2007, most active (64%) breeding sites in U.S. waters were managed. This study used data from the U.S. Great Lakes Colonial Waterbird Database and The Nature Conservancy's Great Lakes Island GIS database to identify important features of breeding sites in the U.S. Great Lakes and broaden understanding of cormorant presence at the island-landscape scale. Islands 0.5–10 ha were used more frequently than expected, and most sites had remoteness values of ≤ 3 km. Colony size was positively correlated with years occupied and large colonies (> 1000 pairs) developed primarily (95%) on island sites > 1.0 ha. Sites supporting large colonies were more remote than those supporting smaller colonies. Presence of other colonial waterbird species, especially Herring Gulls (Larus argentatus), also characterized cormorant sites. Islands used by cormorants comprised a small proportion (n = 90, 3%) of the U.S. Great Lakes island resource, and < 1% of the total island area. Certain characteristics of breeding sites (e.g., small islands, proximity to mainland) may increase negative attitudes about cormorants. To understand cormorant impacts to island resources (e.g., vegetation; other colonial waterbird species), we suggest cormorant presence in the Great Lakes be considered in the broader context of island science, conservation and known threats, and at a landscape scale.  相似文献   

9.
Atrazine is an herbicide used extensively throughout the Midwest corn belt, including the agricultural regions within the Great Lakes basin watershed. Measurements of atrazine concentrations in the Great Lakes are few, however, so knowledge of its current concentrations, persistence, and trends in this ecosystem is limited. A dynamic annual time step model was used to predict atrazine concentrations over time in the Great Lakes based on varied atrazine loading rates to the lakes (“most-likely” and “high” loading conditions). Four degradation scenarios were evaluated: no degradation, and atrazine degradation with half-lives of 2 years, 5 years, and 10 years. Predicted steady-state concentrations for all of the scenarios and all the Great Lakes ranged from 0.0024 to 0.88 μg/L. The number of years until steady-state conditions were achieved ranged from 4 to over 400 years. The most-likely loading rate and two-year half-life scenario had the lowest concentrations (0.0024 to 0.13 μg/L) and the fewest years (4 to 13 years) to achieve steady-state conditions. Available monitored atrazine concentrations in the Great Lakes are very similar to the most-likely loading rate and 2-year half-life scenario predicted values. Monitored and predicted concentrations in the Great Lakes indicate atrazine does not currently pose a toxicological risk to humans or aquatic organisms, and under current and expected lower loading rates should remain well below criteria values.  相似文献   

10.
Environment and Climate Change Canada has monitored Niagara River water quality in support of the Great Lakes Water Quality Agreement since establishing a fixed site at Niagara-on-the-Lake in 1975. Using over 40 years of data from this site along with the Fort Erie location added in 1983, we examine the status and trends of concentrations and loadings of nutrients and major ions and assess evidence of sources between the two stations. Trends were observed for the majority of measured parameters and there is strong agreement between trends in concentrations and loadings which are generally higher at the downstream site; however, upstream/downstream differences indicate relatively little loading occurs along the length of the river itself. For total phosphorus (TP), inputs from Lake Erie via the Niagara River account for the majority of loading to Lake Ontario and, in some years, exceed the 7000 MTA Lake Ontario target. Between 2014 and 2018, we calculate the mean Niagara River TP loading to be 5275 MTA. We highlight the major changes in water quality constituents over time, including TP, and reveal increased seasonal consumption of TP and SiO2, reflecting potential increases in the biological productivity in Lake Erie. The long and rich Niagara River dataset, which comprises year round sampling (including rare winter data), provides detailed tracking of changing Great Lakes water quality and could be further utilized to assess the impacts of climate change, improve understanding of diatom and harmful algal bloom dynamics, and enhance knowledge of in-lake major ion and nutrient dynamics.  相似文献   

11.
Accurate estimates of total phosphorus (TP) loadings to eastern Lake Erie are critical for developing load reduction targets and for determining if commitments are being met under the Great Lakes Water Quality Agreement, 2012 (GLWQA). Currently, loading calculations from Canadian priority tributaries are supported by year-round event-focused water quality sampling using automated samplers and laboratory water quality measurements. Here we evaluate the suitability of continuously-measured parameters, namely turbidity and flow, to supplement or enhance knowledge about TP concentrations in the Grand River, ON, by providing continuous data alongside event-focused sample measurements. A series of simple and multiple linear regression models were evaluated and compared with respect to their ability to predict TP water concentrations as a function of different combinations of explanatory variables. Explanatory variables included turbidity, flow, season and flow condition (i.e. hysteresis). The models that performed best explained 63–65% of the variation of TP which is comparable to surrogate model applications in the U. S and elsewhere. Additional model calibration work is needed due to gaps in turbidity data particularly during high flow events. We emphasize the need for continued automated, event-focused water quality sampling. However, provided that operational challenges are overcome, our results indicate that sensor-derived water quality parameters to predict TP concentrations is a promising technique that may supplement and improve nutrient loading estimates in the Grand River into the future and provides guidance for the utilization of this method in other tributaries.  相似文献   

12.
Numerous long-term trends in the rate-of-change in monthly mean Great Lakes water levels are identified for the period 1860 to 1998. Statistically significant trends are found for 2, 4, 5, and 7 months of the year for Lakes Superior, Michigan-Huron, Erie, and Ontario, respectively. Many of the trends translate into large changes in net water flux (600 to 1,700 m3/s). In each case, significant positive trends are roughly offset by negative trends during other times of the year. Together with similar trends in monthly lake level anomalies (deviations from the annual mean), these trends indicate important changes in the seasonal cycle of Great Lakes water levels. Specifically, Lakes Erie and Ontario are rising and falling (on an annual basis) roughly one month earlier than they did 139 years ago. Maximum lake levels for Lake Superior are also slightly earlier in the year, and the amplitude of the seasonal cycle of Lake Ontario is found to increase by 23% over the 139-year period. Some of the changes are consistent with the predicted impacts of global warming on spring snowmelt and runoff in the Great Lakes region. Other potential contributors to the observed trends include seasonal changes in precipitation and humaninduced effects such as lake regulation and changes in land use.  相似文献   

13.
Using mobile environmental monitoring can aid in gathering ecological data to meet fish community goals in the Great Lakes. One such approach is the use of large Autonomous Underwater Vehicles (AUVs) to gather data, or the potential use of AUV swarms, where multiple small AUVs work together with each having different data-gathering capabilities. To understand data needs that could be collected by mobile sensor networks to inform decision making, we surveyed Great Lakes professionals involved directly and indirectly in such decision making. Basic data that respondents chose as most important to collect were water temperature, dissolved oxygen, chlorophyll a, turbidity, and blue-green “algae”, which seems to align with variables affecting fish directly or indirectly (through identification of harmful algal blooms). Specialized data chosen as most important were mapping of habitat characteristics, sonar of groupings of fish, and images/video. The time of year to collect all data was chosen as all seasons by the majority of respondents, the frequency most chosen was once a season for mapping of habitat characteristics, once a week for sonar detection of groupings of fish, and once per day for images/video and water temperature. Results were very similar when respondents were asked where data should be collected in the Great Lakes (i.e., tributaries, nearshore areas, etc.) except respondents indicated that images/video should be collected most in fish spawning habitats. Understanding data important to inform decisions of resource professionals will help guide the design of mobile and stationary sensor networks in the Great Lakes.  相似文献   

14.
We used Great Lakes hydrologic data and bird monitoring data from the Great Lakes Marsh Monitoring Program from 1995–2002 to: 1) evaluate trends and patterns of annual change in May-July water levels for Lakes Ontario, Erie, and Huron-Michigan, 2) report on trends of relative abundance for birds breeding in Great Lakes coastal marshes, and 3) correlate basin-wide and lake-specific annual indices of bird abundance with Great Lakes water levels. From 1995–2002, average May, June, and July water levels in all lake basins showed some annual variation, but Lakes Erie and Huron-Michigan had identical annual fluctuation patterns and general water level declines. No trend was observed in Lake Ontario water levels over this period. Abundance for five of seven marsh birds in Lake Ontario wetlands showed no temporal trends, whereas abundance of black tern (Chlidonias niger) declined and that of swamp sparrow (Melospiza georgiana) increased from 1995–2002. In contrast, abundances of American coot (Fulica americana), black tern, common moorhen (Gallinula chloropus), least bittern (Ixobrychus exilis), marsh wren (Cistorthorus palustris), pied-billed grebe (Podilymbus podiceps), sora (Porzana carolina), swamp sparrow, and Virginia rail (Rallus limicola) declined within marshes at Lakes Erie and Huron/Michigan from 1995–2002. Annual abundances of several birds we examined showed positive correlations with annual lake level changes in non-regulated Lakes Erie and Huron/Michigan, whereas most birds we examined in Lake Ontario coastal wetlands were not correlated with suppressed water level changes of this lake. Overall, our results suggest that long-term changes and annual water level fluctuations are important abiotic factors affecting abundance of some marsh-dependent birds in Great Lakes coastal marshes. For this reason, wetland bird population monitoring initiatives should consider using methods in sampling protocols, or during data analyses, to account for temporal and spatial components of hydrologic variability that affect wetlands and their avifauna.  相似文献   

15.
Great Lakes coastal wetlands serve as mediation zones between the land and the lake, regulating the fate of materials received from tributaries prior to discharge to the lake nearshore zone. To improve our understanding of water quality processing and nutrient fate in coastal wetlands, we evaluated within- and across-wetland water quality as a function of environmental drivers over a decade (2009–2018) in three drowned river mouth (Carruthers, Duffin’s, and Rouge) and one barrier lagoon (Frenchman’s Bay) wetlands on the north shore of Lake Ontario. Overall, land-use had a weak relative association with most water quality parameters, reflecting no appreciable changes in land-use across the study years. The barrier lagoon wetland Frenchman’s Bay had a distinctly different water quality pattern from the drowned river mouth wetlands, where water quality followed a high to low concentration gradient from near the tributary confluences (high) to the lake-wetland confluence (low) (permutational analysis of variance p-value < 0.001). Notably, we observed significant differences among celled (i.e., natural ponds in wetlands) and non-celled sites in Duffin’s and Rouge marshes, primarily attributed to strong covariation among phosphorus, phosphate, and organic nitrogen concentrations (permutational analysis of variance p-value < 0.001). This water-quality signature seemed to be driven by solar radiation and lake level variability (i.e., seiche inundation), inferring that wetlands may be important sites for the mobilization of legacy phosphorus in sediments under certain climatic conditions, and following seiche events.  相似文献   

16.
It is important to routinely estimate loads from an entire watershed to describe current conditions and evaluate how watershed-wide management efforts have affected the nutrient and sediment export that affect downstream water quality. However, monitoring in most areas, including the Great Lakes watershed, consists of sampling at a limited number of sites that are only periodically used to estimate total watershed loading. Here, we describe a technique to extrapolate loads measured at a limited number of reference sites to the total load from a large watershed using load ratios between monitored sites and unmonitored areas obtained from a watershed model (i.e., model load ratio, MLR, approach). In this study, modeled nonpoint-source load ratios between monitored tributaries (reference sites) and nearby unmonitored areas and point-source delivery factors for all areas were obtained from a Spatially Referenced Regression On Watershed attributes (SPARROW) model and used to extrapolate the measured loads from an ongoing monitoring program (Great Lakes Restoration Initiative Tributary monitoring program) to the entire Great Lakes watershed. The MLR approach incorporates spatial variability in nonpoint- and point-source delivery, watershed characteristics, and hydrology that are often not considered when estimating loads from unmonitored areas, such as using the unit area load (UAL) extrapolation approach. The MLR approach provided smaller watershed loads than the UAL approach because yields from monitored sites, in general, were larger than from unmonitored areas. When both approaches were used to estimate loads at adjacent monitored sites, the MLR approach provided more accurate estimates than the UAL approach.  相似文献   

17.
The Cooperative Institute for Great Lakes Research (CIGLR) in collaboration with the Great Lakes Observing System and National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory (NOAA GLERL) deployed an autonomous underwater glider in southern Lake Michigan several times per year between 2012 and 2019 to collect offshore (>30 m depth) limnological measurements, including temperature, photosynthetically active radiation (beginning during 2015), and chlorophyll fluorescence. From these data, we calculated mixed layer depth, several measures of light penetration (diffuse attenuation coefficient, first optical depth, euphotic zone depth), and depth of the subsurface chlorophyll maxima. During summer, mean offshore mixed layer depth was typically 10–15 m, Kd for PAR was 0.1–0.17 m?1, first optical depth was 6–9 m, euphotic zone depth was 35–40 m, and depth of subsurface chlorophyll maxima was 30–35 m. We also observed substantial spatial and temporal variation in these values across the basin and within and among seasons. Glider-based observations provide a wider horizontal and vertical perspective than other methods (e.g., ship- and satellite-based observations, buoys, and fixed moorings), and are therefore a valuable, complementary tool for Great Lakes limnology. The set of observations reported here provide seasonal and basin-scale information that may help to identify anomalies useful for future glider-assisted investigation into the role of biophysical processes in Great Lakes limnology and ecology.  相似文献   

18.
The flows in the Great Lakes connecting channels are a major component in the water balance of the Great Lakes Basin. The increased emphasis on Great Lakes water quality and quantity requires an assessment of the accuracy of both measured and computed connecting channel discharge data. In this study, the standard error of typical discharge measurements was found to be approximately 3 to 5 percent, depending upon the number of panels used in the cross section. Mesurement sets were found to have a practical limit of about 25 measurements. The standard error of a set of measurements was found to be on the order of 1 percent. The procedure used to compute the published flows of the Niagara River was found to have an apparent bias of about 2 percent on the high side. It is recommended that the published Niagara River flows be adjusted prior to use in detailed water balance studies.  相似文献   

19.
In Ontario, there is limited comprehensive research regarding the contribution of chloride in groundwater to surface water systems. The delivery of chloride via groundwater can contribute to the degradation of the Great Lakes and their tributaries. Thus, this review intends to fill or identify knowledge gaps regarding assessing groundwater as a potential source of road salt, the single largest use of salt in urban cold region environments, contamination to surface water by synthesizing existing groundwater chloride research in the Lake Ontario Basin. Knowledge regarding source characterization, properties, pathways, and impacts of chloride in the environment is essential to evaluate the contribution of chloride via groundwater. Past groundwater chloride research in the basin is primarily concentrated in highly urbanized areas and has identified localized trends of increasing groundwater chloride concentrations in these regions; however, few investigations have been conducted in varying land uses (e.g., rural or less urbanized watersheds) or at sufficient temporal and/or spatial scales. Significant chloride accumulation is occurring in watersheds and aquifers within the basin. Concentrations are expected to increase until equilibrium is obtained, thus resulting in sustained yearlong elevated concentrations in tributaries. Recently, chloride loading to Lake Ontario has increased significantly, with groundwater inputs having the potential to support long-term increases in chloride concentrations in the lake. However, few studies have evaluated the explicit contribution via groundwater to Lake Ontario, and therefore a knowledge gap continues to exist. We provide a synthesis of additional research priorities to better understand the magnitude of groundwater chloride issues in the basin.  相似文献   

20.
Groundwater in the Great Lakes Basin (GLB) serves as a reservoir of approximately 4000 to 5500 km3 of water and is a significant source of water to the Great Lakes. Indirect groundwater inflow from tributaries of the Great Lakes may account for 5–25% of the total water inflow to the Great Lakes and in Lake Michigan it is estimated that groundwater directly contributes 2–2.5% of the total water inflow. Despite these estimates, there is great uncertainty with respect to the impact of groundwater on surface water in the GLB. In terms of water quantity, groundwater discharge is spatially and temporally variable from the reach to the basin scale. Reach scale preferential flow pathways in the sub-surface play an important role in delivering groundwater to surface water bodies, however their identification is difficult a priori with existing data and their impact at watershed to basin scale is unknown. This variability also results in difficulty determining the location and contribution of groundwater to both point and non-point source surface water contamination. With increasing human population in the GLB and the hydrological changes brought on by continued human development and climate change, sound management of water resources will require a better understanding of groundwater surface–water interactions as heterogeneous phenomena both spatially and temporally. This review provides a summary of the scientific knowledge and gaps on groundwater–surface water interactions in the GLB, along with a discussion on future research directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号