首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The introduction of acid-tolerant heterotrophic microorganisms into sludge bioleaching systems has been proven effective in improving sludge bioleaching processes, and such positive effect is mainly attributed to the biodegradation of low molecular weight organic acids or sludge dissolved organic matter (DOM) toxic to Acidithiobacillus species by the heterotrophic microorganisms introduced. Here we report that elevated dissolved CO2 concentration and resulting extracellular polymeric substances (EPS) in bioleach solution due to the incorporation of heterotrophic microorganisms also play important roles in improving sludge bioleaching. It was found that in tannery sludge bioleaching system coinoculated with Rhodotorula mucilaginosa R30 and Acidithiobacillus species, dissolved CO2 concentration in bioleach solution can be elevated from 0.23-0.54 mg/L to 0.76-1.01 mg/L compared to the control inoculated only with Acidithiobacillus species. Correspondingly, the distinct degradation of sludge DOM was also observed in this experiment. It was experimentally demonstrated that the accumulation of CO2 did greatly enhance the growth of Acidithiobacillus thiooxidans and the decrease rate of pH in the medium. In addition, EPS derived from R. mucilaginosa R30 could bind readily Fe3+ in bioleach solution with maximum binding capacity (MBC) of 0.82 mg Fe3+ by per mg DOC of EPS secreted and the oxidization activity of EPS-bound Fe3+ was decreased but not totally inhibited, indicating that the formation of soluble EPS-Fe(III) complexes enhances, to a certain extent, bioleaching efficiency due to maintaining Fe3+ level in solution by inhibiting Fe precipitation occurrence.  相似文献   

2.
3.
4.
5.
6.
7.
In the 1999 AISC-LRFD, the in-filled concrete strength of concrete-filled tube (CFT) columns is limited to a maximum value of 55 MPa  (N/mm2). That limiting value is raised to 70 MPa in the 2005 AISC-LRFD. This study aims to assess if the LRFD CFT column formulas are applicable to intermediate to long rectangular columns with higher concrete strengths. Twenty four specimens with varying between 29 and 84 MPa were tested. Various formulas and relevant provisions for CFT columns as specified in the major design codes including AISC-LRFD, EC 4, AS-5100, and CSA S16-01 were examined and compared. The design CFT strength (Pu) predicted by the AISC-LRFD formulas and the test results were found to be in good agreement. The higher limiting value of 70 MPa proposed in the 2005 AISC-LRFD appears acceptable. The test results reveal that the 1999 AISC-LRFD design strengths are conservative and tend to penalize these CFT columns with higher concrete strength.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Sorption processes involving secondary iron minerals may significantly contribute to immobilisation of metals in soils and surface waters. In the present work the effect of dissolved organic matter (DOM) from a concentrated bog-water on the adsorption of Cu(II) onto schwertmannite (Fe8O8(OH)6SO4) and goethite (α-FeOOH) has been studied. The acid/base behaviour of DOM up to pH 6 was explained by assuming a diprotic acid with a density of carboxylate groups of 6.90 μeq (mg C)−1. The resulting acidity constants, recalculated to zero ionic strength were and .The uptake of DOM to schwertmannite and goethite was highest at low pH although adsorption was significant also under mildly alkaline conditions. Adsorption to the two minerals was similar although at high pH more DOM was adsorbed to schwertmannite than to goethite.DOM enhanced the adsorption of Cu(II) at moderately low pH in the goethite system but there was no effect of DOM in the case of schwertmannite. The presence of Cu(II) resulted in a decreased adsorption of DOM to goethite at weakly acidic pH and increased adsorption at high pH. In the case of schwertmannite, Cu(II) did not affect DOM uptake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号