首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI®), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality.  相似文献   

2.
Cryptosporidium species are protozoan parasites associated with gastro-intestinal illness. Following a number of high profile outbreaks worldwide, it has emerged as a parasite of major public health concern. A quantitative Monte Carlo simulation model was developed to evaluate the annual risk of infection from Cryptosporidium in tap water in Ireland. The assessment considers the potential initial contamination levels in raw water, oocyst removal and decontamination events following various process stages, including coagulation/flocculation, sedimentation, filtration and disinfection. A number of scenarios were analysed to represent potential risks from public water supplies, group water schemes and private wells. Where surface water is used additional physical and chemical water treatment is important in terms of reducing the risk to consumers. The simulated annual risk of illness for immunocompetent individuals was below 1 × 10− 4 per year (as set by the US EPA) except under extreme contamination events. The risk for immunocompromised individuals was 2-3 orders of magnitude greater for the scenarios analysed. The model indicates a reduced risk of infection from tap water that has undergone microfiltration, as this treatment is more robust in the event of high contamination loads. The sensitivity analysis highlighted the importance of watershed protection and the importance of adequate coagulation/flocculation in conventional treatment. The frequency of failure of the treatment process is the most important parameter influencing human risk in conventional treatment. The model developed in this study may be useful for local authorities, government agencies and other stakeholders to evaluate the likely risk of infection given some basic input data on source water and treatment processes used.  相似文献   

3.
Nitrogen inputs into surface waters from diffuse sources are still unduly high and the assessment of mitigation measures is associated with large uncertainties. The objective of this paper is to investigate selected agricultural management scenarios on nitrogen loads and to assess the impact of differing catchment characteristics in central Germany. A new modelling approach, which simulates spatially distributed N-transport and transformation processes in soil and groundwater, was applied to three meso scale catchments with strongly deviating climate, soil and topography conditions. The approach uses the integrated modelling framework JAMS to link an agro-ecosystem, a rainfall-runoff and a groundwater nitrogen transport model. Different agricultural management measures with deviating levels of acceptance were analysed in the three study catchments.N-leaching rates in all three catchments varied with soil type, the lowest leaching rates being obtained for loess soil catchment (18.5 kg nitrate N ha− 1 yr− 1) and the highest for the sandy soils catchment (41.2 kg nitrate N ha− 1 yr− 1). The simulated baseflow nitrogen concentrations varied between the catchments from 1 to 6 mg N l− 1, reflecting the nitrogen reduction capacity of the subsurfaces. The management scenarios showed that the highest N leaching reduction could be achieved by good site-adapted agricultural management options. Nitrogen retention in the subsurface did not alter the ranking of the management scenarios calculated as losses from the soil zone. The reduction effect depended strongly on site specific conditions, especially climate, soil variety and the regional formation of the crop rotations.  相似文献   

4.
Developing the capability to predict pathogens in surface water is important for reducing the risk that such organisms pose to human health. In this study, three primary data source scenarios (measured stream flow and water quality, modelled stream flow and water quality, and host-associated Bacteroidales) are investigated within a Classification and Regression Tree Analysis (CART) framework for classifying pathogen (Escherichia coli 0157:H7, Salmonella, Campylobacter, Cryptosporidium, and Giardia) presence and absence (P/A) for a 178 km2 agricultural watershed. To provide modelled data, a Soil Water Assessment Tool (SWAT) model was developed to predict stream flow, total suspended solids (TSS), total N and total P, and fecal indicator bacteria loads; however, the model was only successful for flow and total N and total P simulations, and did not accurately simulate TSS and indicator bacteria transport. Also, the SWAT model was not sensitive to an observed reduction in the cattle population within the watershed that may have resulted in significant reduction in E. coli concentrations and Salmonella detections. Results show that when combined with air temperature and precipitation, SWAT modelled stream flow and total P concentrations were useful for classifying pathogen P/A using CART methodology. From a suite of host-associated Bacteroidales markers used as independent variables in CART analysis, the ruminant marker was found to be the best initial classifier of pathogen P/A. Of the measured sources of independent variables, air temperature, precipitation, stream flow, and total P were found to be the most important variables for classifying pathogen P/A. Results indicate a close relationship between cattle pollution and pathogen occurrence in this watershed, and an especially strong link between the cattle population and Salmonella detections.  相似文献   

5.
Xiao S  An W  Chen Z  Zhang D  Yu J  Yang M 《Water research》2012,46(13):4272-4280
A comprehensive quantitative microbial risk assessment (QMRA) of Cryptosporidium infection, considering pathogen removal efficiency, different exposure pathways and different susceptible subpopulations, was performed based on the result of a survey of source water from 66 waterworks in 33 major cities across China. The Cryptosporidium concentrations in source water were 0-6 oocysts/10 L, with a mean value of 0.7 oocysts/10 L. The annual diarrhea morbidity caused by Cryptosporidium in drinking water was estimated to be 2701 (95% confidence interval (CI): 138-9381) cases per 100,000 immunodeficient persons and 148 (95% CI: 1-603) cases per 100,000 immunocompetent persons, giving an overall rate of 149.0 (95% CI: 1.3-606.4) cases per 100,000 population. The cryptosporidiosis burden associated with drinking water treated with the conventional process was calculated to be 8.31 × 10−6 (95% CI: 0.34-30.93 × 10−6) disability-adjusted life years (DALYs) per person per year, which was higher than the reference risk level suggested by the World Health Organization (WHO), but lower than that suggested by the United States Environmental Protection Agency (USEPA). Sixty-six percent of the total health burden due to cryptosporidiosis that occurred in the immunodeficient subpopulation, and 90% of the total DALYs was attributed to adults aged 15-59 years. The sensitivity analysis highlighted the great importance of stability of the treatment process and the importance of watershed protection. The results of this study will be useful in better evaluating and reducing the burden of Cryptosporidium infection.  相似文献   

6.
Over a five year period (2004-08), 1171 surface water samples were collected from up to 24 sampling locations representing a wide range of stream orders, in a river basin in eastern Ontario, Canada. Water was analyzed for Cryptosporidium oocysts and Giardia cyst densities, the presence of Salmonella enterica subspecies enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7. The study objective was to explore associations among pathogen densities/occurrence and objectively defined land use, weather, hydrologic, and water quality variables using CART (Classification and Regression Tree) and binary logistical regression techniques. E. coli O157:H7 detections were infrequent, but detections were related to upstream livestock pasture density; 20% of the detections were located where cattle have access to the watercourses. The ratio of detections:non-detections for Campylobacter spp. was relatively higher (>1) when mean air temperatures were 6% below mean study period temperature values (relatively cooler periods). Cooler water temperatures, which can promote bacteria survival and represent times when land applications of manure typically occur (spring and fall), may have promoted increased frequency of Campylobacter spp. Fifty-nine percent of all Salmonella spp. detections occurred when river discharge on a branch of the river system of Shreve stream order = 9550 was >83 percentile. Hydrological events that promote off farm/off field/in stream transport must manifest themselves in order for detection of Salmonella spp. to occur in surface water in this region. Fifty seven percent of L. monocytogenes detections occurred in spring, relative to other seasons. It was speculated that a combination of winter livestock housing, silage feeding during winter, and spring application of manure that accrued during winter, contributed to elevated occurrences of this pathogen in spring. Cryptosporidium and Giardia oocyst and cyst densities were, overall, positively associated with surface water discharge, and negatively associated with air/water temperature during spring-summer-fall. Yet, some of the highest Cryptosporidium oocyst densities were associated with low discharge conditions on smaller order streams, suggesting wildlife as a contributing fecal source. Fifty six percent of all detections of ≥2 bacteria pathogens (including Campylobacter spp., Salmonella spp., and E. coli O157:H7) in water was associated with lower water temperatures (<∼14 °C; primarily spring and fall) and when total rainfall the week prior to sampling was >∼27 mm (62 percentile). During higher water temperatures (>∼14 °C), a higher amount of weekly rainfall was necessary to promote detection of ≥2 pathogens (primarily summer; weekly rainfall ∼>42 mm (>77 percentile); 15% of all ≥2 detections). Less rainfall may have been necessary to mobilize pathogens from adjacent land, and/or in stream sediments, during cooler water conditions; as these are times when manures are applied to fields in the area, and soil water contents and water table depths are relatively higher. Season, stream order, turbidity, mean daily temperature, surface water discharge, cropland coverage, and nearest upstream distance to a barn and pasture were variables that were relatively strong and recurrent with regard to discriminating pathogen presence and absence, and parasite densities in surface water in the region.  相似文献   

7.
Seasonal and between stream variation (catchment dependent variation) in losses of organic and inorganic carbon via downstream transport and outgassing of CO2 into the atmosphere were studied in 11 small boreal catchments situated in close proximity to each other. Of these catchments four were undrained peatland rich catchments, four drained peatland rich catchments and three managed mineral soil-dominated catchments. Downstream export of total inorganic carbon (TIC) varied between 870 and 1400 kg km− 2 a− 1 and was rather consistent between the catchments, except in the case of the mineral soil-dominated catchment Kangaslampi, where export was only 420 kg km− 2 a− 1. The export of total organic carbon (TOC) varied between 2300 and 14,800 kg km− 2 a− 1 and was highest in peatland rich catchments. Peatland drainage decreased TIC and TOC concentrations in the long term, but did not affect lateral carbon export due to increased runoff from the catchments. Partial pressure of CO2 in streams was the highest in undrained peatland rich catchments, but the outgassing of CO2 into the atmosphere was also high from drained peatlands due to the higher discharge rate and long ditch networks. In mineral soil-dominated catchments both downstream export of carbon and emission into the atmosphere were low. TOC exports were compared in two climatically different years (2003 and 2007). The results indicate that climate change might alter the timing of the TOC export from the catchments, the importance of the spring ice melt diminishing and both snow cover and snow free period export increasing.  相似文献   

8.
Escherichia coli bacteria are commonly used as indicator organisms to designate of impaired surface waters and to guide the design of management practices to prevent fecal contamination of water. Stream sediments are known to serve as a reservoir and potential source of fecal bacteria (E. coli) for stream water. In agricultural watersheds, substantial numbers of E. coli may reach surface waters, and subsequently be deposited into sediments, along with fecal material in runoff from land-applied manures, grazing lands, or wildlife excreta. The objectives of this work were (a) to test the hypothesis that E. coli survival in streambed sediment in the presence of manure material will be affected by sediment texture and organic carbon content and (b) to evaluate applicability of the exponential die-off equation to the E. coli survival data in the presence of manure material. Experiments were conducted at three temperatures (4 °C, 14 °C, and 24 °C) in flow-through chambers using sediment from three locations at the Beaverdam Creek Tributary in Beltsville, Maryland mixed with dairy manure slurry in the proportion of 1000:1. Indigenous E. coli populations in sediments ranged from ca. 101 to 103 MPN g−1 while approx 103 manure-borne E. coli MPN g−1 were added. E. coli survived in sediments much longer than in the overlaying water. The exponential inactivation model gave an excellent approximation of data after 6-16 days from the beginning of the experiment. Slower inactivation was observed with the increase in organic carbon content in sediments with identical granulometric composition. The increase in the content of fine particles and organic carbon in sediments led not only to the slower inactivation but also to lower sensitivity of the inactivation to temperature. Streambed sediment properties have to be documented to better evaluate the role of sediments as reservoirs of E. coli that can affect microbiological stream water quality during high flow events.  相似文献   

9.
The loading of microbial contaminants was examined within the Thomas Brook watershed, a 784 ha mixed land-use catchment located in the headwaters of the Cornwallis River drainage basin (Nova Scotia, Canada). The objectives were to: (i) examine spatial and temporal characteristics of fecal bacteria loading during the growing season from five subwatersheds, and (ii) develop areal fecal indicator organism export coefficients for rural landscapes. Fecal coliform, Escherichia coli, total suspended solids (TSS) concentrations and stream flow were monitored at five locations in the watershed over six consecutive growing seasons (May-Oct, 2001-2006). A nested watershed monitoring approach was used to determine bacterial loading from distinct source types (residential vs. agricultural) during both baseflow and stormflow periods. Areal bacterial loading rates increased in each nested watershed moving downstream through the watershed and were highest in the three subcatchments dominated by agricultural activities. Upper watershed bacterial loading throughout the growing season from an agricultural subcatchment (Growing Season Avg 8.92 × 1010 CFU ha−1) was consistently higher than a residential subcatchment (Growing Season Avg 8.43 × 109 CFU ha−1). As expected, annual average stormflow bacterial loads were higher than baseflow loads, however baseflow loads still comprised between 14 and 35% of the growing season bacterial loads in the five subwatersheds. Fecal bacteria loads were greater during years with higher annual precipitation. A positive linear relationship was observed between E. coli and TSS loading during the 2005 and 2006 growing seasons when both parameters were monitored, indicating that the processes of sediment transport and bacterial transport are linked. It is anticipated that computed areal microbial loading coefficients will be useful in developing watershed management plans. More intensive sampling during stormflow events is recommended for improving these coefficients.  相似文献   

10.
The temporal variability of nitrate transport was monitored continuously in a large agricultural catchment, the 1110 km2 Save catchment in south-west France, from January 2007 to June 2009. The overall aim was to analyse the temporal transport of nitrate through hydrological response during flood events in the catchment. Nitrate loads and hysteresis were also analysed and the relationships between nitrate and hydro-climatological variables within flood events were determined. During the study period, 19 flood events were analysed using extensive datasets obtained by manual and automatic sampling. The maximum NO3 concentration during flood varied from 8.2 mg l−1 to 41.1 mg l−1 with flood discharge from 6.75 m3 s−1 to 112.60 m3 s−1. The annual NO3 loads in 2007 and 2008 amounted to 2514 t and 3047 t, respectively, with average specific yield of 2.5 t km−12 yr−1. The temporal transport of nitrate loads during different seasonal flood events varied from 12 t to 909 t. Nitrate transport during flood events amounted to 1600 t (64% of annual load; 16% of annual duration) in 2007 and 1872 t (62% of annual load; 20% of annual duration) in 2008. The level of peak discharge during flood events did not control peak nitrate concentrations, since similar nitrate peaks were produced by different peak discharges. Statistically strong correlations were found between nitrate transport and total precipitation, flood duration, peak discharge and total water yield. These four variables may be the main factors controlling nitrate export from the Save catchment. The relationship between nitrate and discharge (hysteresis patterns) investigated through flood events in this study was mainly dominated by anticlockwise behaviour.  相似文献   

11.
To assess the effect of organic matter on the transport of Cryptosporidium parvum oocysts in a geochemically heterogeneous saturated porous medium, we measured the breakthrough and collision efficiencies of oocysts as a function of dissolved organic matter concentration in a flow-through column containing ferric oxyhydroxide-coated sand. We characterized the surface properties of the oocysts and ferric oxyhydroxide-coated sand using microelectrophoresis and streaming potential, respectively, and the amount of organic matter adsorbed on the ferric oxyhydroxide-coated sand as a function of the concentration of dissolved organic matter (a fulvic acid isolated from Florida Everglades water). The dissolved organic matter had no significant effect on the zeta potential of the oocysts. Low concentrations of dissolved organic matter were responsible for reversing the charge of the ferric oxyhydroxide-coated sand surface from positive to negative. The charge reversal and accumulation of negative charge on the ferric oxyhydroxide-coated sand led to increases in oocyst breakthrough and decreases in oocyst collision efficiency with increasing dissolved organic matter concentration. The increase in dissolved organic matter concentration from 0 to 20 mg L−1 resulted in a two-fold decrease in the collision efficiency.  相似文献   

12.
Animal manure is a significant source of environmental pollution and manure dilution in barn cleaning and slurry storage is a common practice in animal agriculture. The effect of swine manure dilution on releases of four pollutant gases was studied in a 30-day experiment using eight manure reactors divided into two groups. One group was treated with swine manure of 6.71% dry matter and another with manure diluted with water to 3.73% dry matter. Ammonia release from the diluted manure was 3.32 mg min−1 m−2 and was 71.0% of the 4.67 mg min−1 m−2 from the undiluted manure (P < 0.01). Because the ammonia release reduction ratio was lower than the manure dilution ratio, dilution could increase the total ammonia emissions from swine manure, especially in lagoons with large liquid surface areas. Carbon dioxide release of 87.3 mg min−1 m−2 from the diluted manure was 56.4% of the 154.8 mg min−1 m−2 from the undiluted manure (P < 0.01). Manure dry matter was an important factor for carbon dioxide release from manure. No differences were observed between the treatments (P > 0.05) for both hydrogen sulfide and sulfur dioxide releases. Therefore, dilution could also significantly increase the total releases of hydrogen sulfide and sulfur dioxide to the environment because dilution adds to the total manure volume and usually also increases the total gas release surface area.  相似文献   

13.
Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities.This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km2). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007.The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L−1), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L−1), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L−1 and atrazine 2500 ng L−1 respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L−1, diazinon 2500 ng L−1), which were most probably due to improper handling or even disposal of products; and finally, e) compounds that were used in high amounts but were not detected in surface waters (e.g. isothiazolinones).It can be safely concluded that in catchments of mixed land use, the contributions of biocide and pesticide inputs into surface waters from urban areas are at least as important as those from agricultural areas.  相似文献   

14.
In this research, tetracycline resistant (tetR) and tetracycline susceptible (tetS) Escherichia coli isolates were retrieved from dairy manure and the influence of tetracycline resistance on the transport of E. coli in saturated porous media was investigated through laboratory column transport experiments. Experimental results showed that tetRE. coli strains had higher mobility than the tetS strains in saturated porous media. Measurements of cell surface properties suggested that tetRE. coli strains exhibited lower zeta potentials than the tetS strains. Because the surface of clean quartz sands is negatively charged, the repulsive electrostatic double layer (EDL) interaction between the tetR cells and the surface of sands was stronger and thus facilitated the transport of the tetR cells. Although no difference was observed in surface acidity, cell size, lipopolysaccharides (LPS) sugar content and cell-bound protein levels between the tetR and tetS strains, they displayed distinct outer membrane protein (OMP) profiles. It was likely that the difference in OMPs, some potentially related to drug efflux pumps, between the tetR and tetS strains led to alteration in cell surface properties which in turn affected cell transport in saturated porous media. Findings from this research suggested that manure-derived tetRE. coli could spread more widely in the groundwater system and pose serious public health risks.  相似文献   

15.
Low numbers (15-100 CFU) of Salmonella in food or water may pose a public health risk. The management of infections caused by Salmonella spp. during outbreaks or forecasting of contamination of aquatic resources largely depends on rapid, sensitive and accurate diagnostic in few hours. In this study, a real-time PCR assay in Molecular-Beacon format was developed and culture-independent quantitative enumeration of Salmonella spp. in surface and potable water is being reported for the first time from northern part of India. Molecular Beacon was designed in highly conserved region of invA gene (present in wide range of Salmonella serotypes including all subspecies) encoding an essential component of the invasion associated specialized type Ø protein secretion apparatus for detection of Salmonella spp. in water. The assay could detect directly 10 and 1 genomic equivalent of Salmonella typhimurium ATCC 14028 per PCR with detection probability of 100 and 20%, respectively. Further, the assay could detect 10 CFU/PCR or more of reference strain (S. typhimurium ATCC 14028) without any enrichment in the presence of 108 CFU ml− 1 of non-pathogenic E. coli (E. coli DH5α) with 100% detection probability. The assay could enumerate Salmonella spp. in surface (n = 40) and potable waters (n = 10) directly (without enrichment). Results indicate that northern India is at high risk of developing Salmonella borne infections. Further, real-time PCR assay in Molecular Beacon format can be used for identification of critical contamination points in natural water resources and potable water distribution systems, necessary to implement vaccination plan timely for prevention of waterborne outbreaks caused by Salmonella spp.  相似文献   

16.
Nasr A  Bruen M  Jordan P  Moles R  Kiely G  Byrne P 《Water research》2007,41(5):1065-1073
Recent extensive water quality surveys in Ireland revealed that diffuse phosphorus (P) pollution originating from agricultural land and transported by runoff and subsurface flows is the primary cause of the deterioration of surface water quality. P transport from land to water can be described by mathematical models that vary in modelling approach, complexity and scale (plot, field and catchment). Here, three mathematical models (soil water and analysis tools (SWAT), hydrological simulation program-FORTRAN (HSPF) and système hydrologique Européen TRANsport (SHETRAN)/grid oriented phosphorus component (GOPC)) of diffuse P pollution have been tested in three Irish catchments to explore their suitability in Irish conditions for future use in implementing the European Water Framework Directive. After calibrating the models, their daily flows and total phosphorus (TP) exports are compared and assessed. The HSPF model was the best at simulating the mean daily discharge while SWAT gave the best calibration results for daily TP loads. Annual TP exports for the three models and for two empirical models were compared with measured data. No single model is consistently better in estimating the annual TP export for all three catchments.  相似文献   

17.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

18.
Baldursson S  Karanis P 《Water research》2011,45(20):6603-6614
The present update gives a comprehensive review of worldwide waterborne parasitic protozoan outbreaks that occurred and were published globally between January 2004 and December 2010. At least one hundred and ninety-nine outbreaks of human diseases due to the waterborne transmission of parasitic protozoa occurred and were reported during the time period from 2004 to 2010. 46.7% of the documented outbreaks occurred on the Australian continent, 30.6% in North America and 16.5% in Europe. Cryptosporidium spp. was the etiological agent in 60.3% (120) of the outbreaks, Giardia lamblia in 35.2% (70) and other protozoa in 4.5% (9). Four outbreaks (2%) were caused by Toxoplasma gondii, three (1.5%) by Cyclospora cayetanensis. In two outbreaks (1%) Acanthamoeba spp. was identified as the causative agent. In one outbreak, G. lamblia (in 17.6% of stool samples) and Cryptosporidium parvum (in 2.7% of stool samples) as well as Entamoeba histolytica (in 9.4% of stool samples) and Blastocystis hominis (in 8.1% of stool samples) were detected. In those countries that are likely affected most a lack of surveillance systems is noticeable. However, countries that established surveillance systems did not establish an international standardization of reporting systems.  相似文献   

19.
The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag0) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag0 particles, preventing aggregation during encapsulation. In this study, bio-Ag0 was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag0 and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag+ from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag0powder m−2 in a submerged plate membrane reactor operated at a flux of 3.1 L m−2 h−1. Upon startup, the silver concentration in the effluent initially increased to 271 μg L−1 but after filtration of 31 L m−2, the concentration approached the drinking water limit ( = 100 μg L−1). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m−2 h−1, showing the potential of this membrane technology for water disinfection on small scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号