首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of disinfection by-products (DBPs) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total organic chlorine (TOCl), bromine (TOBr), and iodine (TOI). The formation and distribution of halogen-specific TOX during chlorination and chloramination of natural organic matter (NOM) isolates in the presence of bromide and iodide ions were studied. As expected, chloramination produced significantly less TOX than chlorination. TOCl was the dominant species formed in both chlorination and chloramination. TOI was always produced in chloramination, but not in chlorination when high chlorine dose was used, due to the limited presence of HOI in chlorination as a result of the oxidation of iodide to iodate in the presence of excess chlorine. The formation of TOI during chloramination increased as the initial iodide ion concentration increased, with a maximum of ∼60% of the initial iodide ion becoming incorporated into NOM. Iodine incorporation in NOM was consistently higher than bromine incorporation, demonstrating that the competitive reactions between bromine and iodine species in chloramination favoured the formation of HOI and thus TOI, rather than TOBr. Correlations between the aromatic character of the NOM isolates (SUVA254 and % aromatic C) and the concentrations of overall TOX and halogen-specific TOX in chloramination were observed. This indicates that the aromatic moieties in NOM, as indicated by SUVA254 and % aromatic C, play an important role in the formation of overall TOX and halogen-specific TOX in chloramination. THMs comprised only a fraction of TOX, up to 7% in chloramination and up to 47% in chlorination. Although chloramine produces less TOX than chlorine, it formed proportionally more non-THM DBPs than chlorine. These non-THM DBPs are mostly unknown, corresponding to unknown health risks. Considering the higher potential for formation of iodinated DBPs and unknown DBPs associated with the use of chloramine, water utilities need to carefully balance the risks and benefits of using chloramine as an alternative disinfectant to chlorine in order to satisfy guideline values for THMs.  相似文献   

2.
Hua G  Reckhow DA 《Water research》2007,41(8):1667-1678
Seven diverse natural waters were collected and treated in the laboratory under five oxidation scenarios (chlorine, chloramine, both with and without preozonation, and chlorine dioxide). The impact of these disinfectants on the formation of disinfection byproducts was investigated. Results showed that preozonation decreased the formation of trihalomethanes (THMs), haloacetic acids (HAAs) and total organic halogen (TOX) for most waters during postchlorination. A net increase in THMs, HAAs and TOX was observed for a water of low humic content. Either decreases or increases were observed in dihaloacetic acids and unknown TOX (UTOX) as a result of preozonation when used with chloramination. Chloramines and chlorine dioxide produced a higher percentage of UTOX than free chlorine. They also formed more iodoform and total organic iodine (TOI) than free chlorine in the presence of iodide. Free chlorine produced a much higher level of total organic chlorine (TOCl) and bromine (TOBr) than chloramines and chlorine dioxide in the presence of bromide.  相似文献   

3.
Zhao Q  Shang C  Zhang X  Ding G  Yang X 《Water research》2011,45(19):6545-6554
When chlorine is applied before or during UV disinfection of bromide-containing water, interactions between chlorine, bromide and UV light are inevitable. Formation of halogenated organic byproducts was studied during medium-pressure UV (MPUV) and chlorine coexposure of phenol, nitrobenzene and benzoic acid and maleic acid, chosen to represent electron-donating aromatics, electron-withdrawing aromatics, and aliphatic structures in natural organic matter (NOM), respectively. All were evaluated in the presence and absence of bromide. MPUV and chlorine coexposure of phenol produced less total organic halogen (TOX, a collective parameter for halogenated organic byproducts) than chlorination in the dark, and more haloacetic acids instead of halophenols. Increases in TOX were found in the coexposure of nitrobenzene and benzoic acid, but maleic acid was rather inert during coexposure. The presence of bromide increased the formation of brominated TOX but did not significantly affect total TOX formation, in spite of the fact that it reduced hydroxyl radical levels. MPUV and chlorine coexposure of NOM gave a higher differential UV absorbance of NOM and a larger shift to lower molecular weight compounds than chlorination in the dark. However, TOX formation with NOM remained similar to that observed from dark chlorination.  相似文献   

4.
Chlorination of drinking water in the presence of bromide and dissolved organic carbon (DOC) leads to the formation of brominated and chlorinated disinfection by-products (DBP). The concentration of bromide ions in the raw water is a significant factor in the speciation of DBP formed, and causes shifts in trihalomethane (THM) formation from chlorinated to brominated species. Drinking water treatment techniques that remove organic contaminants without affecting bromide ion concentrations cause increases in the brominated THM. For the present study, three water supplies containing different DOC and ambient bromide concentrations were filtered through biologically assisted granular activated carbon (BGAC). Similar to adsorption and coagulation treatment, this treatment does not remove bromide from drinking water; also, THMFP (trihalomethane formation potential) analysis indicated that the chlorinated effluent contained higher concentrations of brominated THM in comparison to the influent. Although BGAC may increase the brominated THM, which may be more toxic than the chlorinated THM, the overall reduction of THMFP by DOC removal far exceeds this negative change, thereby producing a much less toxic finished drinking water. This work is part of a study to make high DOC surface waters on the Canadian prairie safe and palatable for small volume users (individuals or small communities).  相似文献   

5.
A sensitive short-term mutagenicity test, the microscale fluctuation test has been coupled with a concentration method based on adsorption on Sep-PakR C18 cartridges as a method for screening drinking water mutagens. Comparison with XAD-2 concentration method showed that Sep-Pak adsorbed 5 times higher quantity of organics but was slightly less efficient for adsorbing TOX.Microscale fluctuation test was found to be more sensitive than Ames test by testing known direct-acting mutagens and concentrates of drinking water. Samples derived from conventional treatment including chlorination from eight surface water supplies in Norway were concentrated at pH 2 by adsorption on the disposable columns. The adsorbates were tested at different doses by the microscale fluctuation assay. The mutagenic properties of drinking water samples were also related to total organic carbon (TOC), total organic halogen (TOX) and trihalomethanes (THM) concentrations. Dose-related mutagenic responses were found for all the samples with S. typhimurium TA 100 and TA98 strains without metabolic activation. Good relationship was found between mutagenicity data and TOX and THM results. The method showed to be simple, rapid and suitable for routine screening of mutagens in drinking water.  相似文献   

6.
Ebie K  Li F  Azuma Y  Yuasa A  Hagishita T 《Water research》2001,35(1):167-179
Adsorption isotherms of organic micropollutants in coexistence with natural organic matter (NOM) were analyzed to evaluate the impacts of pore size distribution of activated carbon (AC) on the competition effects of the NOM. Single solute adsorption experiments and simultaneous adsorption experiments with NOM contained in a coagulation-pretreated surface water were performed for four agricultural chemicals and three coal-based activated carbons (ACs) having different pore distributions. The results showed that, for all the carbons used, the adsorption capacity of the chemicals was reduced distinctly in the presence of NOM. Such a reduction was more apparent for AC with a larger portion of small pores suitable for the adsorption of small organic molecules and for the agricultural chemicals with a more hydrophilic nature. Ideal adsorbed solution theory (IAST) incorporated with the Freundlich isotherm expression (IAST-Freundlich model) could not interpret the impact of NOM on the adsorption capacity of the chemicals unless a pore blockage effect caused by the adsorption of NOM was also considered. By taking into account this effect, the adsorption isotherm of the chemicals in the presence of NOM was well described, and the capacity reduction caused by the NOM was quantitatively assessed from the viewpoints of the site competition and the pore blockage. Analytical results clearly indicated that pore blockage was an important competition mechanism that contributed to 10-99% of the total capacity reductions of the chemicals, the level depended greatly on the ACs, the chemicals and the equilibrium concentrations, and could possibly be alleviated by broadening the pore size distributions of the ACs to provide a large volume percentage for pores with sizes above 30 A.  相似文献   

7.
Various halogenated organic compounds are formed by chlorination of water. In this study, formation of organic compounds halogenated from a reagent humic acid and extract of a leaf mold were examined under various conditions. The following overall formation equation was obtained from empirical data under the practical wide range when free chlorine remained.
[TOX]=kTOX[TOC][Cl2]otβ.
Here, [TOX] is the concentration of total organic halogen after t h in units of mg chlorine per liter; [TOC] and [Cl2]o are concentrations of total organic carbon and dosed chlorine in units of mg per liter; kTOX is the rate constant and and β are parameters. From the values of kTOX, and β, the character of organic substances i.e. precursor of halogenated organic compounds, in water can be evaluated. The values kTOX, and β for humic acid are 0.053, 0.28 and 0.13, and the values for extract of the leaf mold are 0.032, 0.36 and 0.15, respectively. The activation energies are 10 kJ mol−1 and 11 kJ mol−1 for the reactions of humic acid and leaf mold extract, respectively.  相似文献   

8.
In order to estimate the adsorbability by activated carbon of organic compounds dissolved in aqueous solutions, the contribution of individual atoms to the adsorption process is calculated. The contribution of carbon, bromine and chlorine atoms is positive, that of oxygen atoms is negative, that of hydrogen atoms is very small and that of nitrogen atoms is influenced by the kind of functional group in which they are contained. The dominant factors governing adsorption are the numbers of carbon and oxygen atoms in a molecule. The activated carbon's effectiveness for adsorption of organic compounds dissolved in solutions can be predicted from such water quality indexes as total organic carbon, total organic nitrogen, total organic halogen an total oxygen demand.  相似文献   

9.
Disinfection by-product (DBP) exposure characterization studies are often based on the analysis of a limited number of samples collected from a distribution system (DS) in which DBP levels are variable over time and space. A compositing technique was developed to simplify the sample collection procedures for integrating over temporal variations in DBPs measured in terms of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halogen (TOX). Over the course of 5 days analysis, the single composited sample was within 94-100% of the average THM concentration in all grab samples, 92-105% of HAAs, and 130% of the TOX concentration. Additionally, temporal variability factors such as timing of sample collection and the handling of tap water prior to consumption were found to influence DBP levels in consumers' drinking water. Included in our study of home water use are the effects of boiling which removed up to 98% of THMs and point of use (POU) devices which all showed DBP removal but differed depending on the device used. These factors should be taken into consideration in DBP exposure characterization for epidemiologic studies.  相似文献   

10.
Boyer TH  Singer PC 《Water research》2005,39(7):1265-1276
The objective of this research was to compare enhanced coagulation with anion exchange for removal of disinfection by-product (DBP) precursors (i.e. natural organic matter (NOM) and bromide). Treatment with a magnetic ion exchange resin (MIEX((R))) was the primary focus of this study. Raw waters from four utilities in California were evaluated. The waters had low turbidity, low to moderate organic carbon concentrations, a wide range of alkalinities, and moderate to high bromide ion concentrations. The treated waters were compared based on removal of ultraviolet (UV) absorbance, dissolved organic carbon (DOC), trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP). The results indicated that treatment with MIEX is more effective than coagulation at removing UV-absorbing substances and DOC. Treatment with MIEX and treatment with MIEX followed by coagulation yielded similar results, suggesting that coagulation of MIEX-treated water does not provide additional removal of organic carbon. MIEX treatment reduced the THMFP and HAAFP in all waters, and did so to a greater extent than coagulation. Treatment with MIEX was most effective in raw waters having a high specific UV absorbance and a low anionic strength. Following MIEX treatment, subsequent chlorination resulted in a shift to the more brominated THM and HAA species as compared to chlorination of the raw water. MIEX also removed bromide to varying degrees, depending on the raw water alkalinity and initial bromide ion concentration.  相似文献   

11.
Artificial neural network (ANN) models were developed to predict disinfection by-product (DBP) formation during municipal drinking water treatment using the Information Collection Rule Treatment Studies database complied by the United States Environmental Protection Agency. The formation of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halide (TOX) upon chlorination of untreated water, and after conventional treatment, granular activated carbon treatment, and nanofiltration were quantified using ANNs. Highly accurate predictions of DBP concentrations were possible using physically meaningful water quality parameters as ANN inputs including dissolved organic carbon (DOC) concentration, ultraviolet absorbance at 254 nm and one cm path length (UV254), bromide ion concentration (Br), chlorine dose, chlorination pH, contact time, and reaction temperature. This highlights the ability of ANNs to closely capture the highly complex and non-linear relationships underlying DBP formation. Accurate simulations suggest the potential use of ANNs for process control and optimization, comparison of treatment alternatives for DBP control prior to piloting, and even to reduce the number of experiments to evaluate water quality variations when operating conditions are changed. Changes in THM and HAA speciation and bromine substitution patterns following treatment are also discussed.  相似文献   

12.
The effects of temperature and addition of OH radical scavengers/enhancers or HOBr scavenger on the formation of bromoorganic disinfection byproducts (DBPs) from ozonation of six raw waters were studied in true batch reactors. The formation of bromoorganic DBPs during ozonation generally increased with the increase of temperature, but might also decrease for the waters with somewhat higher values of specific UV absorbance (SUVA). The addition of hydrogen peroxide, ethanol, or ammonium dramatically decreased the formation of bromoorganic DBPs; t-butanol addition significantly increased the formation of bromoorganic DBPs; bicarbonate addition might increase or decrease bromoorganic DBP formation depending on the water source. For all the waters treated with the chemical addition, the level of total organic bromine (TOBr) varied with the same pace as that of ozone exposure (CT), which suggests that TOBr formed during ozonation may be used to estimate the CT, a measure for the achieved degree of disinfection. The results demonstrate that for each water, the correlation between TOBr and CT was less affected by the change of chemical composition of the water than that between BrO(3)(-) and CT; for a given chemical composition and temperature of a water, there generally were well-defined relationships between TOBr and CT, and bromoform and CT just as that between BrO(3)(-) and CT. The possible mechanisms behind the linear functions of TOBr or BrO(3)(-) versus CT were given. Further study is needed to examine whether the trends found in this research can be applicable for the high SUVA waters.  相似文献   

13.
The effects of granular activated carbon filtration and of the combination of ozonation and GAC filtration on the quality of Rhine water were studied in a pilot plant. The scope of the study was to compare both systems in relation to the removal of organic contaminants in water, and to the reduction of the side effects of chlorination. The water quality was measured with organic surrogate parameters (organohalogen, -nitrogen, -phosphorus and -sulphur) and in bacterial mutagenicity assays.In this particular setting, the combination of ozonation and GAC filtration was superior in all points to GAC filtration alone. The effects of ozonation are sometimes quite different, depending on the type of water treated. Its positive influence should be confirmed in a local situation.As GAC treatment causes a shift towards formation of more brominated THM after chlorination, special attention was given to this item. A higher inorganic bromide/DOC ratio resulted in higher brominated THM concentrations after chlorination. However, the mutagens formed during chlorination in presence of more inorganic bromide could be inactivated more easily by rat liver homogenate than in the normal setting. The results of this study confirmed earlier findings stating a negative influence of chlorination on water quality.  相似文献   

14.
Korshin GV  Kim J  Gan L 《Water research》2006,40(5):1070-1078
Transformations of diethylstilbestrol (DES) and bisphenol A (BPA) in conventional chlorination and electrochemically (EC) treated solutions were examined using spectrophotometry and chromatographic analyses. EC treatment was carried out using an undivided EC cell with a PbO2 anode and a stainless steel cathode. EC-treatment and conventional chlorination caused DES and BPA to undergo a rapid degradation accompanied by the generation of low molecular weight chlorinated organic species indicative of the breakdown of DES and BPA. The identified compounds were predominated by chloroacetic acids (HAAs), but approximately 80% of the total organic halogen (TOX) was comprised by unidentified species. For EC treatment, the HAA yields were lower and HAAs were predominated by monochloroacetic acid (MCAA), while in the case of conventional chlorination, trichloroacetic acid (TCAA) was predominant and MCAA was virtually absent. The changes in the HAA speciation and yields were concluded to be caused by the EC-driven reductive dehalogenation which, however, did not affect the unidentified fraction of TOX. This indicated that the unidentified part of TOX was comprised by aromatic chlorinated forms of BPA and DES. Their resistance to degradation in EC reactors indicates that these compounds may be stable in conditions typical for drinking water treatment and distribution.  相似文献   

15.
Lim TT  Feng J  Zhu BW 《Water research》2007,41(4):875-883
In this study, carbon tetrabromide (CTB), bromoform (BF) and dibromomethane (DBM) were the target compounds investigated for their reduction kinetics and pathways with nano-scale Fe and Ni/Fe particles synthesized in laboratory. The BET surface areas of these nano-scale particles were around two orders of magnitude higher than that of the commercial micro-scale Fe particles. Batch reduction experiments were carried out with a metal loading of 2.5gl(-1) for the nano-scale particles, and 125gl(-1) for the commercial micro-scale Fe. The nano-scale Ni/Fe was the most reactive for reductive dehalogenation of the brominated methanes. The rates of bromide ion liberated during the reduction of the brominated methanes were usually higher than the disappearance rates of the parent compounds, indicating occurrence of concerted debromination mechanism. Analysis of the reduction kinetics showed that CTB and BF were mainly reduced through hydrogenolysis reaction, while over 76% of DBM was reduced through concerted reductive debromination to methane. Addition of Ni to Fe increased the specific reduction rates of the target compounds and reactive intermediates, but only marginally changed the distribution of their end products. Through comprehensive kinetic and mechanistic examinations of the reduction dehalogenation of various brominated methanes, a scheme summarizing their overall reduction pathways with the nano-scale Fe and Ni/Fe is proposed.  相似文献   

16.
《Water research》1996,30(7):1651-1660
Bromate ion removal by powdered activated carbon (PAC) in batch mode and granular activated carbon (GAC) in continuous mode was evaluated under various operational conditions. For PAC, removal kinetics were found to be prohibitively slow, with high PAC doses required; removal improved with decreasing pH and decreasing natural organic matter. GAC was also influenced by these same water quality conditions, with an additional influence by empty bed contact time (EBCT). Bromate ion was found to be reduced to bromide ion and not all bromide in bromate was recovered supporting the theory that bromate reduction involves non-equilibrium sorption-reduction mechanisms. Both PAC and GAC results were found to be carbon-specific.  相似文献   

17.
Despite evidence of formation of brominated compounds in seawater swimming pools treated with chlorine, no data about exposure levels to these compounds have been reported. To address this issue, a survey has been carried out in four establishments (representing 8 pools) fed with seawater and devoted to relaxing and cure treatments (thalassotherapy centres located in Southeast of France). Carcinogenic and mutagenic brominated disinfection byproducts (trihalomethanes -THM- and halogenated acetic acids -HAA-) were quantified at varying levels, statistically related to organic loadings brought by bathers, and not from marine organic matter, and also linked to activities carried out in the pools (watergym vs swimming). Bromoform and dibromoacetic acid, the most abundant THM and HAA detected, were measured at levels up to 18-fold greater than the maximum contaminant levels of 60 and 80 μg/L fixed by US.EPA in drinking waters. The correlations between these disinfection byproducts and other environmental factors such as nitrogen, pH, temperature, free residual chlorine, UV254, chloride and bromide concentrations, and daily frequentation were examined. Because thalassotherapy and seawater swimming pools (hotels, cruise ships,…) are increasing in use around the world and because carcinogenic and mutagenic brominated byproducts may be produced in chlorinated seawater swimming pools, specific care should be taken to assure cleanliness of users (swimmers and patients taking the waters) and to increase water circulation through media filters to reduce levels of brominated byproducts.  相似文献   

18.
Chlorination studies of free and combined amino acids   总被引:2,自引:0,他引:2  
Nitrogenous organic compounds in raw and treated water are of concern because they may exert high chlorine demand. They are also known as precursors of halogenated compounds. In this study, chlorine demand, TOX and THM formation potentials of 22 free amino acids, and some polypeptides and proteins were determined. Results have shown that the reactivity of free amino acids with chlorine is related to their structure. Experiments conducted with combined amino acids have shown that the amide linkage does not participate significantly in the chlorine demand of polypeptides, and does not seem to be TOX precursor. Specific amino acids that possess reactive side groups such as amino nitrogen, sulfur or activated aromatic ring were defined as the main chlorine consumer and TOX precursor sites of polypeptides. Complementary experiments indicated that sodium sulfite dechlorination can affect, more or less, the determination of amino acids TOXFP.  相似文献   

19.
A new procedure to determine TOX (total organic halogens) recovered in ether extracts was developed as a modification of the EPA standard method for TOX analysis in aqueous solutions. A volume of sample was injected directly into the carbon in the pyrolysis furnace sample boat. Good recoveries (80–100%) were found for all the model compound solutions, except for the n-chloroalkanes. In this case, the molecules are long chain aliphatics and were not easily pyrolysed in the furnace. A linear correlation was found between the percentage recovery of these aliphatic compounds and the number of carbons in the molecule. The precision of the method was found to be 2–3% for TOX in the 103–105 ng injected range.  相似文献   

20.
以上海市两座不同水源的典型水厂为研究对象,分析了可生物降解有机物(BOM)和总有机物(以DOC表征)在水厂常规净水工艺中的变化规律.结果表明,水厂常规工艺对AOC、BDOC与DOC的去除能力均不高,且受水温影响明显,两水厂出水均为生物不稳定性饮用水;DOC主要在沉淀单元被去除,BDOC在沉淀、砂滤单元都有去除,AOC则主要在砂滤单元被去除;加氯可造成DOC(或BDOC)向AOC的转化,使出厂水AOC浓度增加,要确保出厂水的生物稳定性,必须同步削减水中BOM与总有机物的浓度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号