首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
殷伟凤 《计算机与现代化》2012,(11):145-148,189
针对目前广泛应用的低功耗低速嵌入式设备,以减少面积为目标,本文给出一个精简的实现AES加密算法的硬件结构。在字节置换模块的设计中,改进采用查找表的方法而只用组合逻辑实现,采用将GF(28)域中的元素映射为复合域GF(24)来求逆的方法,大量减少资源占用;对混合列计算进行优化设计;最后,采用Altera的Cyclone芯片基于VHDL语言实现AES加密算法,并给出仿真结果。  相似文献   

2.
研究植被指数与光合有效辐射吸收比FPAR的定量关系对于提高FPAR反演精度与指导生产实践具有一定的参考价值。研究在三维辐射传输模型LESS基础上发展了一个兼具一维模型简洁和三维模型精度优势的LESS1D模块(已随LESS模型正式发布,www.lessrt.org);探究随机均匀场景和三维异质场景中植被冠形、盖度等7种因素对6种植被指数与FPARgreen关系的影响。结果表明:(1)在均质性场景中,NDVI、SAVI、EVI对FPARgreen拟合相对最优,而在异质性场景中,则为NDVI和RVI。(2)在异质性场景中,不同冠形下FPARgreen与植被指数的拟合精度为圆柱形>椭球形>圆锥形;植被盖度较低时,植被指数对FPARgreen拟合精度较差;随着太阳天顶角增大,RVI与FPARgreen由线性关系变为指数关系。结论:树冠体积和树冠几何结构是不同冠形影响FPARgreen大小的关键因素,而叶片聚集度、植被盖度和植被指数类型则是影响植被指数饱和...  相似文献   

3.
《计算机工程》2018,(4):274-280
树冠作为遥感图像森林植被的典型纹理单元,具有突出的结构纹理特征,但现有分割方法较少利用此类结构纹理进行分割。为此,提出一种基于视觉注意机制的遥感图像森林植被纹理分割方法。将遥感图像中树冠的形状和结构作为视觉注意目标,通过纹理滤波增强树冠纹理,使用特定的多尺度树冠显著图圆盘(SID)模型标记树冠,并将各个多尺度树冠SID作为种子,设计改进的区域生长方法分割森林植被区域。实验结果表明,该方法能够准确标记多数典型树冠,有效提高森林植被区域的分割精度。  相似文献   

4.
崔翔  姜小峰 《计算机应用》2013,33(6):1711-1714
树木的动态显示在自然场景模拟中有着重要的地位。采用Cook-Torrance光照明模型和预计算的半透明贴图实现了叶片的绘制,使用梁模型导出的拟合多项式结合偏移修正实现枝干的快速形变计算,通过索引枝干层级数据贴图实现GPU中多级枝干的形变。预计算和GPU的使用使得模拟过程中真实感和实时性得以平衡。实验结果表明,该方法实现了快速真实的动态树场景渲染。  相似文献   

5.
以传输触发体系结构(TTA)为基础,为支持大数运算扩展寄存器堆,并增加模乘单元以加速模乘操作,提出一种ECC整体算法处理器.该处理器具有如下特点: ①利用TTA工具链可快速开发出ECC公钥系统;②模乘单元将以基数为处理字长的高基数Montgomery算法与行共享流水结构相结合,具有良好的可扩展性;③流水站实现矢量乘操作,并同时支持GF(p)和GF(2n)双有限域;④通过调整总线宽度和流水站个数,可满足不同性能/面积要求.在0.18μm CMOS工艺下,其高性能和紧缩面积版本的电路等效门数分别为117.4×103和40.6×103,可分别在0.87ms和7.83ms内完成一次GF(p)或GF(2n)上的192位EC标量乘运算.  相似文献   

6.
介绍了一种新颖的从单张树木图片中提取树木的L-system规则的算法,并将其应用于三维树木建模。用户首先在图片上勾画出树木的主要可见枝干和树冠轮廓,通过图像处理的方法识别出树木的可见枝干的二维骨架;然后依据树木枝干的分布规律对骨架进行三维重建,并抽取其L-system生长规则和几何参数。所得L-system规则在树冠轮廓的约束下,经过迭代生长可以重建树木的分支结构。实验证明,相比以往的规则提取方法,该方法在保持模型质量的前提下,成本更低,方法更加简便。  相似文献   

7.
利用双线性配对,基于域GF(q)上的奇异椭圆曲线上某个加法群上的任意点都可以映射为扩域GF(qk)上的一个乘法群中的一个元素,因此椭圆曲线上的离散对数也就转变成了相应乘法群上的离散对数问题,这就是著名的MOV攻击和FR攻击的思想。如果将Weil配对或Tate配对应用在合适  相似文献   

8.
为了排除植被含水量对氮素总含量的可能性干扰,以及用叶绿素含量来估算氮含量时忽略叶绿体外氮素影响的问题,提出了利用植被干物质来估算植被氮含量的算法。以Lopex’93数据库为数据来源,拟合构建了植被干物质氮素含量(%)与光谱反射率之间的模型关系,并与鲜植被进行对比分析,又利用光谱反射率的4种变化形式(一阶导数、二阶导数、倒数的对数和倒数的导数)来验证分析。结果表明,由差值植被指数DVI(R760-R1520)拟合的复合模型Y=17.787×241.456x和指数模型Y=17.787×e5.487x对植被干物质氮含量具有较好的估算精度,其拟合值和真实值的相关系数R2=0.901。而用鲜植被拟合的模型精度明显低于干物质模型,经过反射率4种参数的验证,也说明了由DVI构建的干物质氮含量估算模型可以得到较好的结果。  相似文献   

9.
结合法向聚类的大叶片植物重建   总被引:1,自引:0,他引:1  
根据大叶片植物自身的特性,提出一种从3D点云中重建大叶片植物的方法,主要包括点云聚类和叶片重建两部分.首先根据叶片3D点之间的距离对叶片的3D点云进行初始聚类;然后依据叶子大而平、不同叶片法线方向相差较大的特性,通过计算点的法线将3D点云细分为多个聚类,每个聚类表示一片叶子;最后利用一个通用叶子模型将每个聚类拟合成叶子.实验结果表明,该方法可以重建真实感很强的大叶片植物.  相似文献   

10.
一类本原σ-LFSR 序列的构造与计数   总被引:1,自引:0,他引:1  
有限域GF(2k)上本原σ-LFSR序列的分量序列均是二元域上具有相同极小多项式的m-序列,已知一条GF(2k)上本原σ-LFSR序列的距离向量,就可以用二元域上的m-序列构造它.研究了一类本原σ-LFSR序列——Z本原σ-LFSR序列距离向量的计算问题.给出了一种GF(2k)上n级Z本原σ-LFSR序列距离向量的计算方法,其主要思想是,利用GF(2k)上1级Z本原σ-LFSR序列的距离向量来计算n级Z本原σ-LFSR序列的距离向量.与其他现有方法相比,该方法的效率更高.更有价值的是,该方法也适用于GF(2k)上n级m-序列距离向量的计算.最后给出了GF(2k)上n级Z本原σ-LFSR序列的计数公式,说明其个数比GF(2k)上n级m-序列更多.  相似文献   

11.
A detailed sensitivity analysis investigating the effect of woody elements introduced into the Discrete Anisotropic Radiative Transfer (DART) model on the nadir bidirectional reflectance factor (BRF) for a simulated Norway spruce canopy was performed at a very high spatial resolution (modelling resolution 0.2 m, output pixel size 0.4 m). We used such a high resolution to be able to parameterize DART in an appropriate way and subsequently to gain detailed understanding of the influence of woody elements contributing to the radiative transfer within heterogeneous canopies. Three scenarios were studied by modelling the Norway spruce canopy as being composed of i) leaves, ii) leaves, trunks and first order branches, and finally iii) leaves, trunks, first order branches and small woody twigs simulated using mixed cells (i.e. cells approximated as composition of leaves and/or twigs turbid medium, and large woody constituents). The simulation of each scenario was performed for 10 different canopy closures (CC = 50-95%, in steps of 5%), 25 leaf area index (LAI = 3.0-15.0 m2 m− 2, in steps of 0.5 m2 m− 2), and in four spectral bands (centred at 559, 671, 727, and 783 nm, with a FWHM of 10 nm). The influence of woody elements was evaluated separately for both, sunlit and shaded parts of the simulated forest canopy, respectively. The DART results were verified by quantifying the simulated nadir BRF of each scenario with measured Airborne Imaging Spectroradiometer (AISA) Eagle data (pixel size of 0.4 m). These imaging spectrometer data were acquired over the same Norway spruce stand that was used to parameterise the DART model.The Norway spruce canopy modelled using the DART model consisted of foliage as well as foliage including robust woody constituents (i.e. trunks and branches). All results showed similar nadir BRF for the simulated wavelengths. The incorporation of small woody parts in DART caused the canopy reflectance to decrease about 4% in the near-infrared (NIR), 2% in the red edge (RE) and less than 1% in the green band. The canopy BRF of the red band increased by about 2%. Subsequently, the sensitivity on accounting for woody elements for two spectral vegetation indices, the normalized difference vegetation index (NDVI) and the angular vegetation index (AVI), was evaluated. Finally, we conclude on the importance of including woody elements in radiative transfer based approaches and discuss the applicability of the vegetation indices as well as the physically based inversion approaches to retrieve the forest canopy LAI at very high spatial resolution.  相似文献   

12.
Estimating live fuel moisture content from remotely sensed reflectance   总被引:3,自引:0,他引:3  
Fuel moisture content (FMC) is used in forest fire danger models to characterise the moisture status of the foliage. FMC expresses the amount of water in a leaf relative to the amount of dry matter and differs from measures of leaf water content which express the amount of water in a leaf relative to its area. FMC is related to both leaf water content and leaf dry matter content, and the relationships between FMC and remotely sensed reflectance will therefore be affected by variation in both leaf biophysical properties. This paper uses spectral reflectance data from the Leaf Optical Properties EXperiment (LOPEX) and modelled data from the Prospect leaf reflectance model to examine the relationships between FMC, leaf equivalent water thickness (EWT) and a range of spectral vegetation indices (VI) designed to estimate leaf and canopy water content. Significant correlations were found between FMC and all of the selected vegetation indices for both modelled and measured data, but statistically stronger relationships were found with leaf EWT; overall, the water index (WI) was found to be most strongly correlated with FMC. The accuracy of FMC estimation was very low when the global range of FMC was examined, but for a restricted range of 0-100%, FMC was estimated with a root-mean-square error (RMSE) of 15% in the model simulations and 51% with the measured data. The paper shows that the estimation of live FMC from remotely sensed vegetation indices is likely to be problematic when there is variability in both leaf water content and leaf dry matter content in the target leaves. Estimating FMC from remotely sensed data at the canopy level is likely to be further complicated by spatial and temporal variations in leaf area index (LAI). Further research is required to assess the potential of canopy reflectance model inversion to estimate live fuel moisture content where a priori information on vegetation properties may be used to constrain the inversion process.  相似文献   

13.
Statistical and radiative-transfer physically based studies have previously demonstrated the relationship between leaf water content and leaf-level reflectance in the near-infrared spectral region. The successful scaling up of such methods to the canopy level requires modeling the effect of canopy structure and viewing geometry on reflectance bands and optical indices used for estimation of water content, such as normalized difference water index (NDWI), simple ratio water index (SRWI) and plant water index (PWI). This study conducts a radiative transfer simulation, linking leaf and canopy models, to study the effects of leaf structure, dry matter content, leaf area index (LAI), and the viewing geometry, on the estimation of leaf equivalent water thickness from canopy-level reflectance. The applicability of radiative transfer model inversion methods to MODIS is studied, investigating its spectral capability for water content estimation. A modeling study is conducted, simulating leaf and canopy MODIS-equivalent synthetic spectra with random input variables to test different inversion assumptions. A field sampling campaign to assess the investigated simulation methods was undertaken for analysis of leaf water content from leaf samples in 10 study sites of chaparral vegetation in California, USA, between March and September 2000. MODIS reflectance data were processed from the same period for equivalent water thickness estimation by model inversion linking the PROSPECT leaf model and SAILH canopy reflectance model. MODIS reflectance data, viewing geometry values, and LAI were used as inputs in the model inversion for estimation of leaf equivalent water thickness, dry matter, and leaf structure. Results showed good correlation between the time series of MODIS-estimated equivalent water thickness and ground measured leaf fuel moisture (LFM) content (r2=0.7), demonstrating that these inversion methods could potentially be used for global monitoring of leaf water content in vegetation.  相似文献   

14.
ABSTRACT

Hyperspectral remote sensing is economical and fast, and it can reveal detailed spectral information of plants. Hence, hyperspectral data are used in this study to analyse the spectral anomaly behaviours of vegetation in porphyry copper mine areas. This analytical method is used to compare the leaf spectra and relative differences among the vegetation indices; then, the correlation coefficients were computed between the soil copper content and vegetation index of Quercus spinosa leaves at both the leaf scale and the canopy scale in the Chundu mine area with different geological backgrounds. Lastly, this study adopts hyperspectral data for the level slicing of vegetation anomalies in the Chundu mine area. The results showed that leaf spectra in the orebody and background area differed greatly, especially in the infrared band (750 nm – 1300 nm); moreover, some indices like the normalized water index (NWI) and normalized difference water index (NDWI) of Quercus spinosa and Lamellosa leaves are sensitive to changes in the geological background. Compared with the canopy, the leaf hyperspectral indices of Quercus spinosa in Chundu can better reflect soil cuprum (Cu) anomaly. In addition, the NWI and NDWI of Quercus spinosa are significantly correlated with the soil Cu content at both the canopy scale and the leaf scale. Consequently, the results of the vegetation anomaly level slicing can adequately reflect the plant anomalies from ore bodies and nearby areas, thereby providing a new ore-finding method for areas with a high degree of vegetation coverage.  相似文献   

15.
利用地面激光雷达三维点云数据,在已有的枝干结构重建方法基础上,提出了一种利用点云密度,结合间隙率模型反演的单木总叶面积,在冠层内分体元添加树叶的方法,重建完整的单木三维结构。该方法成功应用于基于光线追踪方法模拟的点云和野外实测点云数据,实现了单木三维结构重构。重建的单木叶面积与真实叶面积相对误差小于0.9%,方向间隙率的相对误差不超过4.0%。实验结果表明:重建单木三维结构与真实结构在目视效果和定量评价两方面都具有较好的一致性。  相似文献   

16.
The spectral characteristics of and the interaction between leaves and light were analysed based on the optical absorption coefficients of foliar water and biochemical components. The equations for calculating the radiative-equivalent water thickness (REWT) of leaves and canopy were presented based on the difference in reflectance at 945 and 975 nm. Because of the direct reflection on leaf surface and the leaf internal scattering, the REWT derived from the Beer–Lambert principle was different from the leaf or canopy equivalent water thickness (EWT). Two independent datasets at canopy or leaf scales were designed to calibrate and validate the relationships between EWT and REWT. The results show that (1) the leaf or canopy REWT can be calculated from the reflectance difference between 945 and 975 nm; (2) the leaf REWT was 3.3 times larger than the EWT with a significant determination coefficient (R 2) of 0.80 for our dataset and 0.86 for the Leaf Optical Properties Experiment (LOPEX'93) dataset; (3) the canopy REWT was 1.4 times larger than the EWT with a significant R 2 of 0.56 for the winter wheat canopy spectral dataset in 2002, and 0.61 for the 2004 dataset. Therefore, the leaf or canopy EWT can be detected by calculating REWT from the difference in reflectance at 945 and 975 nm. Furthermore, because the relationship between REWT and EWT reflected the interaction of light with leaves or canopy, the multiple scattering optical pathlength in the near-infrared (NIR) bands can also be calculated by the ratio of REWT to EWT.  相似文献   

17.
针对不同树种的树叶疏密及空间结构不同,提出基于激光点云数据,顾及冠层叶面积密度的树木三维绿量(Living Vegetation Volume, LVV)计算方法。该方法首先根据树木局部点云的主方向相似度和局部点云轴向分布密度分离枝干与树叶,剔除非光合作用成分,提取树叶点云;然后建立体元模型,引入Graham算法确定分层树冠边界,获取激光接触频率,从而基于体元冠层分析(Voxel-based Canopy Profiling, VCP)方法求出冠层叶面积密度(Leaf Area Density, LAD);最后分层棱柱体积乘以叶面积密度,累加得到树木的三维绿量。利用Riegl VZ-400地面激光扫描仪获取13棵不同形状和树种的树木点云数据,利用该方法估算各树木三维绿量,并与传统的凸包法和台积法的结果对比。实验结果表明,台积法计算的三维绿量值最大,凸包法计算的三维绿量次之,顾及冠层叶面积密度的树木三维绿量方法计算的三维绿量值最小,为台积法的36.69%,为凸包法的47.80%。相比传统方法,顾及冠层叶面积密度的树木三维绿量计算方法侧重光合作用组分叶片点云的统计,并考虑了树冠内部树叶分布情况,更符合树木的实际情况,能充分利用三维点云数据特性,反映树冠内部三维绿量分布。  相似文献   

18.
Vegetation canopy reflectance   总被引:2,自引:0,他引:2  
Possible cause-effect relationships in producing vegetation canopy reflectance are discussed. Hemispherical reflectance and even bidirectional reflectance measurements are shown to be inadequate to predict or understand vegetation canopy reflectance in many situations. Among the additional important parameters necessary for prediction and understanding of vegetation canopy reflectance are leaf hemispherical transmittance, leaf area and orientation, characteristics of other components of the vegetation canopy (stalks, trunks, limbs), soil reflectance, solar zenith angle, look angle, and azimuth angle. The effects of these parameters on vegetation canopy bidirectional spectral reflectance are described.  相似文献   

19.
Vegetation water content is an important parameter for retrieval of soil moisture from microwave data and for other remote sensing applications. Because liquid water absorbs in the shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5 Thematic Mapper band 4 (0.76-0.90 μm wavelength) and band 5 (1.55-1.65 μm wavelength), can be used to determine canopy equivalent water thickness (EWT), which is defined as the water volume per leaf area times the leaf area index (LAI). Alternatively, average canopy EWT can be determined using a landcover classification, because different vegetation types have different average LAI at the peak of the growing season. The primary contribution of this study for the Soil Moisture Experiment 2004 was to sample vegetation for the Arizona and Sonora study areas. Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a plant canopy analyzer and digital hemispherical (fisheye) photographs. NDII was linearly related to measured canopy EWT with an R2 of 0.601. Landcover of the Arizona, USA, and Sonora, Mexico, study areas were classified with an overall accuracy of 70% using a rule-based decision tree using three dates of Landsat 5 Thematic Mapper imagery and digital elevation data. There was a large range of NDII per landcover class at the peak of the growing season, indicating that canopy EWT should be estimated directly using NDII or other shortwave-infrared vegetation indices. However, landcover classifications will still be necessary to obtain total vegetation water content from canopy EWT and other data, because considerable liquid water is contained in the non-foliar components of vegetation.  相似文献   

20.
While certain spectral reflectance indices have been shown to be sensitive to the expression of a range of performance-related traits in crops, knowledge of the potentially confounding effects associated with plant anatomy could help improve their application in phenotyping. Morphological traits (leaf and spike wax content, leaf and spike orientation, and awns on spikes) were studied in 20 contrasting advanced wheat lines to determine their influence on spectral indices and in their association with grain yield under well-irrigated conditions. Canopy reflectance (400–1100 nm) was determined at heading and grain filling during two growing seasons and three vegetation indices (VIs; red normalized difference vegetation index (RNDVI), green normalized difference vegetation index (GNDVI), and simple ratio (SR)), and five water indices (WIs; one simple WI and four normalized WIs (NWI-1, NWI-2, NWI-3, and NWI-4)) were calculated. The major reflectance fluctuations caused by the differences in leaf and spike morphology mainly occurred in the infrared region (700–1100 nm) and little variation in the visible region (400–700 nm). The NWI-3 ((R970R880)/(R970 + R880)) consistently showed a stronger association with yield than the RNDVI by using uncorrected canopy reflectance (original raw data) and data adjusted by scattering and smoothing. When canopy reflectance was corrected by a scattering method, the NWI-3 and a modified RNDVI with 958 nm showed the strongest correlations with grain yield by grouping lines for waxy leaves and spikes, curved leaves, and erect and awnless spikes. The results showed that the relationship between the spectral indices and grain yield can be improved (higher correlations) by correcting canopy reflectance for confounding effects associated with differences in leaf and spike morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号