首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on tem- poral behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is devel- oped to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2... ) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to an- other, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteris- tics of the discharge system are studied for further understanding of the radial structure.  相似文献   

2.
1. IntroductionArgon plasma has been frequently used for mate-rial processing and film fabrication processes [1l [21 [31.The efficiency of these processes has very close rela-tion with plasma parameters [4][5], such as ion den-sity, electron temperature and ion energy dlstrlbu-tion. Lots of research has been done on the relation-ship between efficiency and availability of materialprocessing and plasma parameters [6][7].Both lCP dlscharge and DBD discharge are newtype plasma systems developed…  相似文献   

3.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

4.
A coaxial dielectric barrier discharge(DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond(ns)pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 ℃ and 64.3 ℃ after 900 s operation, respectively.The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs,reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.  相似文献   

5.
In a general plane-parallel electrode system,the edge of the electrode will undermine the uniformity of the dielectric barrier discharge(DBD)because of the influence of the distorted electrical field.In this paper,the influence of the non-uniform electrical field on the edge efect of DBDs in a short-gap is investigated.We present some of the experimental results of DBDs produced by three kinds of convex-spherical electrodes.The results show that there is a dark area(the homogeneous discharge)in the central region of the electrode and a bright halo(the filamentary discharge)in the outer peripheral region,and the radius of the dark region is determined by the electrode geometry.The calculated results of the transverse(radial)field component distribution on the surface of the electrodes show that the edge efect does not come from the electrode edge,but the transverse field.The discharge has enough space to be fully developed and then format the filamentary discharge in the outer peripheral region because the streamer of the filamentary discharge is driven to move along the direction of the longer path by the transverse field.Thus,the homogeneous discharge(the Townsend DBD or a glow DBD)could not be produced in this area.  相似文献   

6.
In this paper,we study the characteristics of atmospheric-pressure pulsed dielectric barrier discharge (DBD) under the needle-plate electrode configuration using a one-dimensional self-consistent fluid model.The results show that,the DBDs driven by positive pulse,negative pulse and bipolar pulse possess different behaviors.Moreover,the two discharges appearing at the rising and the falling phases of per voltage pulse also have different discharge regimes.For the case of the positive pulse,the breakdown field is much lower than that of the negative pulse,and its propagation characteristic is different from the negative pulse DBD.When the DBD is driven by a bipolar pulse voltage,there exists the interaction between the positive and negative pulses,resulting in the decrease of the breakdown field of the negative pulse DBD and causing the change of the discharge behaviors.In addition,the effects of the discharge parameters on the behaviors of pulsed DBD in the needle-plate electrode configuration are also studied.  相似文献   

7.
A kind of dielectric barrier discharge(DBD) device composed of water electrodes with 3×3forms can produce large-area low-temperature plasmas at atmospheric pressure.To reflect the discharge characteristics of DBD better,a dynamic simulation model,which is based on the voltage controlled current source(CCS),is established,then the established model in Matlab/Simulink is used to simulate the DBD in air.The voltage-current waves and Lissajous at a voltage of 10 kV,11 kV and 12 kV peak value with a frequency of 15 kHz are studied.The change of the discharge power of DBD with a different amplitude and frequency of applied voltage is also analyzed.The result shows the voltage-current waves,Lissajous and discharge power of DBD under different conditions from the simulation agree well with those of the experiment.In addition,we propose a method to calculate the dielectric barrier capacitance C_d and the gap capacitance C_g,which is valid through analyzing the variation of capacitance at different voltage amplitudes.  相似文献   

8.
In this work,striations in pulsed glow discharges are studied by experiments and Particle-In-Cell/Monte Carlo Collision (PIC/MCC) simulation.The spatio-temporal evolution of the potential and the electron energy during the discharge are analyzed.The processes of striation formation in pulsed glow discharges and dielectric barrier discharges (DBD) are compared.The results show that the mechanisms of striation in pulsed DC discharge and DBD are similar to each other.The evolution of electron energy distribution function before and after the striation formation indicates that the striation results from the potential well of the space charge.During a pulsed breakdown,the striations are formed one by one towards the anode in a weak field channel.This indicates that the formation of striations in a pulsed discharge depends on the flow of modulated electrons.  相似文献   

9.
Various applications of volume dielectric barrier discharges(DBDs) with airflows have attracted significant attention such as in the fields of plasma medicine, surface modification, ozone synthesis, etc. In this work, the nonlinearity characteristics of DBDs in initiating and extinguishing boundaries with airflows are experimentally investigated. It is found that the difference between initiating pulse repetition frequencies(PRFs) and extinguishing PRFs is affected by the addition of airflows. A hysteresis region is produced between these two PRFs. A topological rule of Thom's classification theorem is proposed to investigate the hysteresis phenomenon of discharges with airflows. It is concluded that the discharge state is dependent on the operation route. The discharge state would transit from initiating to extinguishing, or in the opposite direction, while passing along a specific operation route. Based on the topological method, two nonlinear laws of discharge structure transition under the typical operation routes are predicted and verified in the discharge experiments.  相似文献   

10.
The formation of homogeneous dielectric barrier discharge(DBD)in air is a key scientific problem and core technical problem to be solved for the application of plasmas.Here,we report the effect of two-dimensional(2D)nanomaterial Ti3C2Tx(Tx=-F,-O and/or-OH)on regulating the electrical discharge characteristics.The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD.The electron avalanche development for the uneven electrode structure is calculated,and the discharge mode transition is modeled.The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD.The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited.The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature.This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know.This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD,establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.  相似文献   

11.
1 IntroductionDielectric Barrier Discharge (DBD) is a focus of low-temperature plasma research in recent years [1~4]. Gen-erally speaking, discharge intensity and ionization de-gree of gas in the gap strengthen with the increase infrequency. In practice, many DBD devices display theaforesaid characteristics only in a very small frequencyrange. When the frequency is beyond that range, thedischarge intensity will decline with the increase in fre-quency. See Fig. 1 from the top down.Resonanc…  相似文献   

12.
In this paper, various patterns of dielectric barrier glow discharge simulated by a phenomenological dynamic model are reported. The model is constructed based on the basic dynamic process of dielectric barrier glow discharge and involves the voltage-transfer characteristic as well as the lateral inhibition effect. In simulations, different driving voltage profiles are applied to achieve one or two pulsed discharges in each half-period and the corresponding pattern evolution is investigated. The final stable patterns driven by a rectangular wave voltage organize simply as stationary striations or hexagonal lattices. The patterns driven by a multi-step wave appear to be much more complicated, with complementary striations, concentric rings and square superlattices observed. The evolutions of these patterns from the initial uniform state are described and it is found that the spreading of the inhibition effect plays a key role in these evolutions. The numerical simulations in the present work are in excellent accordance with previous experiments and fluid modeling. This dynamic model proves to be a convenient and promising approach to reproducing different pattern structures and pattern evolutions in dielectric barrier glow discharge systems.  相似文献   

13.
Discharge plasmas in air can be accompanied by ultraviolet(UV) radiation and electron impact,which can produce large numbers of reactive species such as hydroxyl radical(OH·),oxygen radical(O·),ozone(O3),and nitrogen oxides(NOx),etc.The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds(VOCs) treatment with the discharge plasmas.In this paper,we propose a volume discharge setup used to purify formaldehyde in air,which is configured by a plate-to-plate dielectric barrier discharge(DBD) channel and excited by an AC high voltage source.The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde.The energy efficiency ratios(EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel,and the most desirable processing effect is the gas flow velocity within the range from2.50 to 3.33 m s-1.Moreover,the EERs of both the generated dosages of oxides(O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell.Additionally,the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density,and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1.This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD,and it is helpful in the applications of VOCs removal by using discharge plasma.  相似文献   

14.
Aniline is a toxic water pollutant detected in drinking water and surface water,and this chemical is harmful to both human and aquatic life.A dielectric barrier discharge(DBD)reactor was designed in this study to investigate the treatment of aniline in aqueous solution.Discharge characteristics were assessed by measuring voltage and current waveforms,capturing light emission images,and obtaining optical emission spectra.The effects of several parameters were analyzed,including treatment distance,discharge power,DBD treatment time,initial pH of aniline solutions,and addition of sodium carbonate and hydrogen peroxide to the treatment.Aniline degradation increased with increasing discharge power.Under the same conditions,higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances.At a discharge power of 21.5 W,84.32%of aniline was removed after 10 min of DBD treatment.Initial pH significantly influenced aniline degradation.Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline.Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC.  相似文献   

15.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

16.
The striation plasmas are usually generated within a positive column of glow discharge, where rich and complex physical interactions are involved, especially, in the medium or high pressures. Along these lines, our work aims to thoroughly investigate the formation and destruction of helium striation plasmas at kPa level pressures. The characteristics of the helium striation plasmas, and especially the optical emission properties are explored. The emission lines of 706.52 nm and 391.44 nm related to the energetic electrons and the high-energy metastable helium atoms respectively, were focused on in this work. The formation of striation plasmas in a helium glow discharge, is mainly associated with the instability originating from the stepwise ionization of high-energy metastable state atoms, Maxwellization of the electron distribution functions and gas heating. Additionally, the destruction effect of helium striation plasmas is of great significance when a small amount of nitrogen or oxygen is mixed into the discharge plasmas. The reduction of the mean electron energy and the consumption of the high-energy metastable helium atoms are considered as the underlying reasons for the destruction of striation plasmas.  相似文献   

17.
Low-pressure dielectric barrier discharge(DBD) TiCl4/O2and N2 plasmas have been used to deposit titanium oxide films at different power supply driving frequencies. A homemade large area low pressure DBD reactor was applied, characterized by the simplicity of the experimental set-up and a low consumption of feed gas and electric power, as well as being easy to operate. Atomic force microscopy, scanning electron microscopy, energy dispersive spectroscopy,and contact angle measurements have been used to characterize the deposited films. Experimental results show all deposited films are uniform and hydrophilic with a contact angle of about 15 o.Compared to titanium oxide films deposited in TiCl4/O2gas mixtures, those in TiCl4/O2/N2gas mixtures are much more stable. The contact angle of titanium oxide films in TiCl4/O2/N2gas mixtures with the addition of 50% N2 and 20% TiCl4 is still smaller than 20 o, while that of undoped titanium oxide films is larger than 64 owhen they are measured after one week. The low-pressure TiCl4/O2plasmas consist of pulsed glow-like discharges with peak widths of several microseconds, which leads to the uniform deposition of titanium oxide films. Increasing a film thickness over several hundreds of nm leads to the film’s fragmentation due to the over-high film stress. Optical emission spectra(OES) of TiCl4/O2DBD plasmas at various power supply driving frequencies are presented.  相似文献   

18.
The study on homogeneous DBDs at atmospheric pressure has attracted much attention for their advantages in applications.Tremendous work has been conducted both experimentally and numerically at a constant applied voltage or driving frequency.However the investigation of dielectric barrier discharges is still scarce for a constant power or power density.In this work,a new computational approach for DBDs is developed to explore atmospheric DBDs at a constant power based on a one-dimensional fluid model.The frequency and gap spacing effects on the atmospheric plasmas are systematically analyzed based on computational data.The computational results show that at a constant power both the current density and the amplitude of the applied voltage decrease,whereas the current pulse width increases,with increasing frequency.The simulation also indicates that as the gap spacing is raised with a fixed power and frequency,the current density and electron density increase initially,then reach their peak values,and then decrease,which means that there are maximum values for both of them.These results are significant for many industrial applications,as they can be used to optimize plasma devices of DBDs with the consideration of power consumption.  相似文献   

19.
Fast photography and optical emission spectroscopy are implemented in a 5 mm neon gap dielectric barrier discharge (DBD) at atmospheric pressure with quartz glass used as the dielectric layer. Results show that it starts with a Townsend discharge and ends at a sub-normal glow discharge in neon DBD. Based on the Townsend discharge, the first ionization coefficient of neon is measured. The measurements are consistent with those at low pressure. Optical emission spectroscopy indicates that the spectra are mainly composed of atomic lines of neon, molecular bands and molecular ion bands originating from inevitable gas impurities (mainly nitrogen). Moreover, spectral lines emitted from atomic neon corresponding to the transitions (2p5 3p → 2p5 3s) are predominant. Although the second positive system of N2(C3Πu → B3Πg) is observed, their intensities are too weak compared with neon's spectrum. The molecular nitrogen ion line of 391.4 nm is observed. It reveals that Penning ionization between high energy neon excited states and the inevitable gas impurities plays an important role in the value of the α coefficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号