首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Hollow core reinforced concrete columns are generally preferred in use to decrease the cost and weight/stiffnesss ratio of members, such as bridge columns and piles. With a simplified stress state assumption, strengthening a hollow core reinforced concrete column with fiber-reinforced polymer (FRP) wrapping provides a biaxial confinement to the concrete, which leads to a need of defining the effect of FRP wrapping on the strength and ductility of the hollow core reinforced concrete columns. In this study, two groups of four hollow core reinforced concrete columns (205?mm outer diameter, 56?mm hollow core diameter, and 925?mm height) were tested under concentric, eccentric (25 and 50?mm eccentricity) and bending loads to observe the effect of carbon FRP (CFRP) wrapping. All the columns had internal steel reinforcement. Half of the columns had three layers of circumferential CFRP wrapping, whereas the other half had no external confinement. Axial load-bending moment (P–M) diagrams of each group were drawn using the obtained experimental results for both groups. It was observed that, CFRP wrapped columns had higher load and moment carrying capacities than the other group. An analytical model is proposed for drawing the P–M diagram of CFRP wrapped hollow core reinforced concrete columns.  相似文献   

2.
This paper discusses the mechanical behavior of reinforced concrete columns wrapped with fiber-reinforced polymer (FRP) sheets. A numerical routine was developed to predict the behavior of the columns using a step-by-step technique. The routine is based on an existing model and was modified to account for confinement provided by the traditional steel as well as the external FRP wraps. Several empirical equations for the confined concrete were calibrated with results from experimental tests from different published papers. The most accurate equation was incorporated into the routine to predict the stress-strain relation of the column up to failure. A different confinement to the outer concrete cover and the inner core was used to account for the FRP wraps and the transverse steel. The model was calibrated with experimental results from different experiments on FRP-wrapped reinforced concrete columns.The model was taken one step further by using it to predict the behavior of reinforced concrete columns, with a combination of steel corrosion and CFRP wraps. The columns modeled were subjected to harsh corrosive environment over 44 months. The model successfully predicted the load deformation in both axial and circumferential directions in corroded and intact columns, both wrapped and unwrapped, with good accuracy. The analysis forms a solid foundation for accurate evaluation of the effect of corrosion and wrapping on reinforced concrete columns.  相似文献   

3.
This paper studies the cross-sectional behavior of steel columns strengthened with fiber-reinforced polymers (FRPs). The composite column is constructed by wrapping the steel I-section column with epoxy-saturated glass- and carbon-FRPs (GFRP and CFRP) sheets in the transverse direction and subsequently filling the voids between the FRP and the steel with concrete. Experimental tests were performed on stub columns under axial compression including one to three CFRP wraps. A corner treatment technique, to avoid stress concentration at the corners and to improve confinement efficiency, was also investigated. A simplified analytical model was developed to predict the axial behavior of the composite columns. Experimental results showed significant enhancement in the behavior of the composite columns primarily attributable to the confinement mechanism imposed by the FRP jacket and concrete. Increasing the corner radius resulted in higher compressive strength of the confined concrete and ultimate axial strain of the composite columns. Good agreement between the analytically developed axial load-displacement relationships and the test data indicates that the model can closely simulate the cross-sectional behavior of the composite columns.  相似文献   

4.
This paper presents an experimental and nonlinear finite-element analysis (NLFEA) results of circular short reinforced concrete (RC) columns confined externally with carbon fiber-reinforced polymers (CFRP) subjected to pure axial loading. The experimental program involves the fabrication and testing of 55 specimens wrapped with different number and configuration of CFRP sheet layers in the transverse and longitudinal directions. In addition, the columns were modeled using NLFEA. After reasonable validation of NLFEA with the experimental test results of companion columns and available technical literature results, NLFEA was expanded to provide a parametric study of 96 columns that correlates the ultimate axial stress of CFRP-confined RC columns to unconfined strength of concrete (fco), the volumetric ratio of CFRP (ρf), and the size effect. Results indicated that the ultimate capacity and ductility increase with the increase in volumetric ratio of CFRP (ρf) and unconfined strength of concrete (fco). In addition, the results indicated that size effect exists and the confinement effectiveness was more pronounced for columns with low fco and ρf.  相似文献   

5.
Most previous studies on concrete short columns confined with fiber-reinforced polymer (FRP) composites were based on small-scale testing, and size effect of the columns still has not been studied thoroughly. In this study, 99 confined concrete short columns wrapped with aramid FRP (AFRP) jackets and 36 unconfined concrete short columns with circular and square cross sections were tested under axial compressive loading. The circular specimens were divided into six groups, and the square specimens were divided into five groups, with each group containing different levels of the AFRP’s confinement. In each group, the specimens were geometrically similar to one another and had three different scaling dimensions. Statistical analyses were used to evaluate the size and interaction effects between the specimen size and the AFRP’s confinement, and a size-dependent model for predicting the strength of the columns was developed by modifying Baz?nt’s size-effect law. The experimental results showed that the size of a specimen had a significant effect on the strength of AFRP-confined concrete short columns, lesser effect on the axial stress-strain curves, and slight effect on the failure modes. The modified Baz?nt model was in good agreement with the experimental data.  相似文献   

6.
This paper presents results of a comprehensive experimental investigation on the behavior of axially loaded short rectangular columns that have been strengthened with carbon fiber-reinforced polymer (CFRP) wrap. Six series, a total of 90 specimens, of uniaxial compression tests were conducted on rectangular and square short columns. The behavior of the specimens in the axial and transverse directions is investigated. The parameters considered in this study are (1) the concrete strength; (2) the aspect ratio of the cross section; and (3) the number of CFRP layers. The findings of this research can be summarized as follows: The CFRP wrapping enhances the compressive strength and the ductility of both square and rectangular columns, but to a lesser degree than that of circular columns. The ultimate strength and the ductility of the CFRP confined concrete increase with increasing number of confining layers. The increase in strength and ductility is more significant for lower strength concrete, representing poor or degraded concrete, than for normal-to-high strength concrete; that is, the maximum gain in strength that can be achieved for 3 ksi concrete wrapped columns is approximately 90%, as compared to only 30% for 6 ksi concrete wrapped columns. The CFRP confining jacket must be sufficiently stiff to develop appropriate confining forces at relatively low axial strain levels. The gain in compressive strength obtained by the CFRP confined concrete depends mainly on the relative stiffness of the CFRP jacket to the axial stiffness of the column.  相似文献   

7.
This study investigates the performance of new bridge columns wrapped with fiber reinforced polymers (FRP) when exposed to aggressive environmental conditions. This has been accomplished through field monitoring and laboratory tests. As part of the field monitoring, temperature data were collected at various locations of bridge columns. In addition, visual inspection of two bridges was performed periodically for over a period of two years. No evidence of deterioration of the FRP wraps was detected during that period. Laboratory tests were performed to investigate how FRP wraps protect reinforced concrete columns from corrosion, and freeze–thaw laboratory tests were conducted to study the impact of temperature cycles on the mechanical behavior of FRP-wrapped columns. From the corrosion experimental tests, it was found that FRP provides excellent protection against aggressive agents (salty water or moisture) even when a single layer is used. Compression tests were conducted on specimens subjected to freeze–thaw cycles. It was found that minor thermal cycles have no effect on the performance of FRP-wrapped concrete specimens. However, for large thermal cycles, some degradation of ductility in the axial and the hoop directions was observed.  相似文献   

8.
The target displacement ductility requirements for circular RC single-column bridge bents are considered using a proposed multifailure mode algorithm to determine the required thickness of fiber-reinforced polymer wraps (FRPs). The procedure is developed using two in-house computer algorithms, PACCC (plastic analysis of circular concrete columns) and PACCC-FRP, to generate a moment-curvature analysis using circular segment slices and subsequent failure mode predictions in single-column bents for both FRP-wrapped and unwrapped circular RC sections. The results of the study showed good comparison to published experimental tests at the ultimate force-deflection states of RC sections and against three commercial “software test beds.” The study uses PACCC-FRP to show that single columns experiencing a brittle failure may be retrofitted with FRP wraps in order to increase the displacement ductility and satisfy target ductility values within the ductility wrap envelope, or wrap-saturation level, as established herein.  相似文献   

9.
This paper aims to examine the effectiveness of near-surface-mounted (NSM) glass fiber-reinforced polymer (GFRP) composite rebars in combination with external confinement with carbon fiber-reinforced polymer (CFRP) composite sheets to repair and strengthen reinforced concrete (RC) columns exposed to axial load and biaxial bending. Nine columns with a square cross section of 150×150??mm were constructed and tested under biaxial eccentric loading with equal eccentricity along each principal axis. Test parameters included load eccentricity, concrete grade, and level of the CFRP confinement used in combination with the NSM-GFRP reinforcement. The effectiveness of the NSM-GFRP reinforcement was greatly affected by the CFRP-confinement level and the load eccentricity. For columns with a high level of CFRP confinement, the gain in the load capacity attributable to the NSM-GFRP reinforcement was higher at a lower eccentricity. For columns with a low level of CFRP confinement, the gain in the load capacity attributable to the NSM-GFRP reinforcement was higher at a higher eccentricity. The enhancement in the load capacity was more pronounced in the columns with a lower concrete grade. An analytical model for predicting the load capacity of RC columns strengthened with NSM-GFRP rebars in combination with CFRP confinement under axial load and biaxial bending is introduced. The model accounts for the nonlinear behavior of materials and the change in geometry under biaxial eccentric loading. The model accuracy is demonstrated by comparing the model predictions with the experimental results.  相似文献   

10.
Steel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1)?compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2)?because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3)?the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4)?the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.  相似文献   

11.
Numerous recent research findings evidenced the success of retrofitting existing RC columns using fiber-reinforced plastic (FRP) jacketing. However, little is known about the residual performance of FRP-retrofitted RC columns following limited seismic damage. In this paper, the residual performance of FRP-retrofitted columns damaged after simulated seismic loading is studied. Eight model columns with a shear aspect ratio of 5.0 were tested first under cyclic lateral force and a constant axial load equal to 20% of the column gross axial load capacity. The main parameters considered were the type of FRP jacket and peak drift ratio where the lateral loading was interrupted. Glass fiber-reinforced plastic (GFRP) and carbon fiber-reinforced plastic (CFRP) were both used for retrofitting. Five of the model columns were subjected to long-term axial loading after being subjected to limited damage by lateral cyclic loading. From the results of long-term loading test, it was found that FRP-retrofitted columns had much smaller creep deformation than the counterpart as-built model. The deformation of retrofitted columns under long-term axial loading depended on the previous damage intensity and the modulus of elasticity of FRP. The effective creep Poisson’s ratios of the retrofitted columns were much smaller than the as-built column but identical for GFRP and CFRP retrofitted columns. Under the testing conditions of this study, the long-term axial deformation of retrofitted columns tends to be sufficiently stable, despite the simulated earthquake damage.  相似文献   

12.
Reinforced concrete (RC) beams shear-strengthened with fiber-reinforced polymer (FRP) fully wrapped around the member usually fail due to rupture of FRP, commonly preceded by gradual debonding of the FRP from the beam sides. To gain a better understanding of the shear resistance mechanism of such beams, particularly the interaction between the FRP, concrete, and internal steel stirrups, nine beams were tested in the present study: three as control specimens, three with bonded FRP full wraps, and three with FRP full wraps left unbonded to the beam sides. The use of unbonded wraps was aimed at a reliable estimation of the FRP contribution to shear resistance of the beam and how bonding affects this contribution. The test results show that the unbonded FRP wraps have a slightly higher shear strength contribution than the bonded FRP wraps, and that for both types of FRP wraps, the strain distributions along the critical shear crack are close to parabolic at the ultimate state. FRP rupture of the strengthened beams occurred at a value of maximum FRP strain considerably lower than the rupture strain found from tensile tests of flat coupons, which may be attributed to the effects of the dynamic debonding process and deformation of the FRP wraps due to the relative movements between the two sides of the critical shear crack. Test results also suggest that while the internal steel stirrups are fully used at beam shear failure by FRP rupture, the contribution of the concrete to the shear capacity may be adversely affected at high values of tensile strain in FRP wraps.  相似文献   

13.
This paper presents the results of an experimental investigation into the behavior of slender steel columns strengthened using high-modulus (313?GPa), carbon fiber-reinforced polymer (CFRP) plates. Eighteen slender hollow structural section square column specimens, 44×44×3.2?mm, were concentrically loaded to failure. The effectiveness of CFRP was evaluated for different slenderness ratios (kL/r), namely, 46, 70, and 93. The maximum increases in ultimate load ranged from 6 to 71% and axial stiffness ranged from 10 to 17%, respectively, depending on kL/r. As kL/r reduced, the effectiveness of CFRP plates also reduced, and failure mode changed from CFRP plate crushing after occurrence of overall buckling, to debonding prior to, or just at, buckling. A simplified analytical model is proposed to predict the ultimate axial load of FRP-strengthened slender steel columns, based on the ANSI/AISC 360-05 provisions, which were modified to account for the transformed section properties and a failure criteria of FRP derived from the experimental results. It was shown that for a given FRP reinforcement ratio, there is a critical kL/r at the low end, below which FRP may not enhance the strength of the column.  相似文献   

14.
This paper describes a study on the behavior of fiber-reinforced polymer (FRP) jacketed square concrete columns subjected to eccentric loading. The effect of strain gradient on the behavior of concrete columns confined by the FRP jacket was investigated through experimental and numerical analysis methods. Nine (108 × 108 × 305 mm) square concrete column stubs with zero, one, and two plies of unidirectional carbon FRP fabric were tested under axial compressive loading. In addition to the FRP jacket thickness, the effects of various eccentricities were examined. The nonlinear finite-element analysis results were compared and validated against the experimental test results. The results show that the FRP jacket can greatly enhance the strength and ductility of concrete columns under eccentric loading and that the strain gradient reduces the retrofit efficiency of the FRP jacket for concrete columns. Therefore, a smaller enhancement factor should be used in designing FRP-jacketed columns under eccentric loading. Furthermore, the nonlinear finite-element models established in this study can be used as templates for future research work on FRP-confined concrete columns.  相似文献   

15.
This paper presents the results of an experimental investigation of the axial behavior of small-scale circular and square plain concrete specimens and large-scale circular and square reinforced concrete columns confined with fiber reinforced polymer (FRP) composite jackets, subject to monotonic, concentric axial loads. Improvements in the axial load-carrying and deformation capacities of FRP jacketed concrete members over unjacketed members are reported. Factors influencing the axial stress-strain behavior of FRP confined concrete, such as transverse dilation and effectively confined regions and their relationship to jacket properties, are identified and discussed. Factors necessary to calibrate in situ jacket behavior and reported or measured FRP material properties are proposed and their interrelationships discussed.  相似文献   

16.
The results of a research program that evaluated the confinement effectiveness of the type and the amount of fiber-reinforced polymer (FRP) used to retrofit circular concrete columns are presented. A total of 17 circular concrete columns were tested under combined lateral cyclic displacement excursions and constant axial load. It is demonstrated that a high axial load level has a detrimental effect and that a large aspect ratio has a positive effect on drift capacity. Compared with the performance of columns that are monotonically loaded until failure, three cycles of every displacement excursion significantly affect drift capacity. The energy dissipation capacity is controlled by FRP jacket confinement stiffness, especially under a high axial load level. The fracture strain of FRP material has no significant impact on the drift capacity of retrofitted circular concrete columns as long as the same confining pressure is provided, which differs from the common opinion that a larger FRP fracture strain is advantageous in seismic retrofitting. The amount of confining FRP greatly affects the length of the plastic hinge region and the drift capacity of FRP-retrofitted columns. A further increase in confinement after a critical value causes a reduction in the deformation capacity of the columns.  相似文献   

17.
This paper presents a finite-element analysis study of elliptical concrete columns, converted from rectangular cross sections and confined with carbon fiber-reinforced polymers (CFRP) through an enhancement/strengthening procedure, under eccentric loadings. The parameters considered for the finite-element analysis study include various eccentric loads, and the number of CFRP layers as well as their orientation with respect to circumferential axis of concrete columns. Validation of the finite-element model was performed leveraging an experimental study reported in the literature. Study findings suggest that eccentric loading versus concentric loading considerably reduces the efficiency of the CFRP wrapping. The study, however, also shows that it is possible to diminish the adverse effect of eccentric loading through proper adjustment of the wrap configuration, i.e., the number of layers as well as the orientation of the fibers.  相似文献   

18.
This paper presents the results of experimental studies on reinforced concrete columns strengthened with carbon fiber-reinforced polymer (CFRP) composites under the combination of axial load and bending moment. A total of seven large-scale specimens with rectangular cross section (200?mm×300?mm) were prepared and tested under eccentric compressive loading up to failure. The overall length of specimens with two haunched heads was 2,700 mm. Different FRP thicknesses of two, three, and five layers; fiber orientations of 0°, 45°, and 90°; and two eccentricities of 200 and 300 mm were investigated. The effects of these parameters on load-displacement and moment-curvature behaviors of the columns as well as the variation of longitudinal and transverse strains on different faces of the columns were studied. The results of the study demonstrated a significant enhancement on the performance of strengthened columns compared to unstrengthened columns.  相似文献   

19.
Reinforced concrete (RC) hollow piers in bridges withstand high moment and shear demands ensured with reduced mass and lower stress on foundations compared with solid piers. Failure of hollow columns is typically affected by premature buckling of reinforcing bars and concrete cover spalling. At present, no guidelines are available for the design of their upgrade, and few research investigations can be found on hollow columns strengthened by using fiber-reinforced polymer (FRP) materials. This paper discusses an experimental program carried out on purely compressed RC hollow columns externally wrapped with glass-fiber-reinforced polymer (GFRP). Three specimens were tested: one specimen was unstrengthened and used as the benchmark; the other two specimens were GFRP-wrapped with different confining reinforcement ratios. Each specimen was designed according to dated codes (i.e., prior to 1970) accounting only for gravity loads. In particular, steel longitudinal bars cross section and steel tie-spacing were designed with the minimum amount of longitudinal reinforcement and minimum tie area at maximum spacing. Tests results highlight that the GFRP-jacket mainly provided ductility increases before low strength increments could be obtained. Refined and simplified numerical models for hollow square RC columns, previously proposed by the authors, herein extend to hollow rectangular members. Comparisons of experimental results and theoretical predictions on the basis of both refined and simplified confinement models were performed and showed good agreement. In the case of the simplified model, a value for the effective ultimate FRP strain was suggested.  相似文献   

20.
The study presented in this paper proposes a new theoretical framework to interpret and capture the mechanics of the fiber-reinforced polymer (FRP) confinement of square reinforced concrete (RC) columns subjected to pure compressive loads. The geometrical and mechanical parameters governing the problem are analyzed and discussed. A single-parameter methodology for predicting the axial stress–axial strain curve for FRP-confined square RC columns is described. Fundamentals, basic assumptions, and limitations are discussed. A simple design example is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号