首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complex eigenvalue analysis is currently a common approach to predict squealing vibration and noise. There are two methods for modeling friction contact in the complex eigenvalue analysis of friction systems. In one method, contact springs are used to simulate friction contact. In another method, no contact spring is used. However, it has been uncertain whether these two modeling methods can predict approximately identical results. In order to clarify the uncertainty, two finite element models of the same brake system for the brake squeal prediction are established and simulated by using ABAQUS and NASTRAN software tools, respectively. In the ABAQUS model, friction coupling is applied to determine normal contact force and no contact spring is assumed. Whilst in the NASTRAN model, the contact spring is assumed by the penalty method to simulate contact connection. Through the numerical simulations, it is recognized that even if the same mesh geometry is applied, generally, these two finite element approaches are not capable of predicting approximately identical unstable frequencies. The ABAQUS approach can predict instabilities of high frequency up to 20 kHz or more, while the NASTRAN approach can only predict some instabilities of high frequency, not all. Moreover, the simulation results also show that both the contact spring stiffness and mesh size have influences to some extent on the prediction results of squeal. The present comparative work illuminates that the modeling method without contact springs is more suitable to predict squealing vibration and noise, comparing to the modeling method with contact springs. It is proposed that one should prefer using the modeling method without contact springs to predict squealing vibration and noise. The proposed study provides the reference for predicting squealing vibration and noise.  相似文献   

2.
郭俊  李伟  温泽峰  吴磊  金学松 《机械强度》2011,33(6):879-884
采用热弹塑性有限元法和裂纹尖端位移法,对轮轨全滑接触状态下的钢轨表面斜裂纹的扩展特性进行分析.热力耦合有限元模型中,考虑轮轨自由表面与环境热对流、裂纹表面间热传导和温度对材料参数的影响,通过移动边界条件模拟轮轨接触区的移动,计算轮轨摩擦因数、裂纹表面间的摩擦因数和裂纹角度对钢轨表面裂纹扩展特性的影响.计算结果表明:在热...  相似文献   

3.
Time-independent orthotropic enrichment functions are introduced for dynamic propagation analysis of moving cracks in composites by the extended finite element method (XFEM). The proposed enrichment functions are derived from the analytical solutions for a moving/propagating crack in orthotropic media, and can be considered as a new extension to the available XFEM techniques for dynamic analysis of stationary and moving cracks in orthotropic materials. They are included within the framework of partition of unity and XFEM to enhance the accuracy of basic FEM solution near a moving crack tip in orthotropic media. The method allows for analysis of the whole crack propagation pattern on an unaltered finite element mesh, which is independently defined from the existence of any predefined crack or its propagation path. A combination of dynamic crack initiation toughness and crack orientation along the maximum circumferential stress is used to design a relatively simple and efficient formulation. Dynamic stress intensity factors (DSIFs) are evaluated by means of the domain separation integral method and the dynamic energy release rate. The time dependent XFEM equations are constructed by discretizing the standard weak formulation of the governing elastodynamics equation. They are solved by the unconditionally stable Newmark time integration scheme. A number of benchmark and test problems are simulated and the results are compared with the available reference results to illustrate the accuracy and efficiency of the proposed scheme.  相似文献   

4.
Journal of Mechanical Science and Technology - A new numerical model combining LaRC failure criterion and extended finite element method (XFEM) is created to describe the failure behavior in...  相似文献   

5.
High temperatures appear on friction clutch surfaces due to the heat generated between the contacting surfaces during the slipping period. In some cases the maximum temperatures will exceed the allowable working temperature; friction clutches will fail rapidly when working under these conditions for a long time. Therefore, it is necessary to study the effect of design parameters (e.g., grooves) on the thermoelastic behavior of friction clutches to avoid these kinds of failures or at least increase the lifetime of friction clutch. A finite element method will be used to investigate the effect of the circumferential groove on the thermoelastic behavior of a single-disc clutch during a sliding phase. Axisymmetric models have been developed in this analysis to simulate the dry clutch systems during the sliding period. The effect of the groove area ratio G.R (defined as the groove area divided by the nominal contact area) on thermal and elastic behaviors is investigated. The results showed that the groove size has a significant effect on the magnitude and distribution of contact pressure, temperature field and heat generated along the frictional surfaces.  相似文献   

6.
基于ANSYS的轮轨摩擦滑动接触应力分析   总被引:1,自引:0,他引:1  
王娟  何成刚  文广  王文健  刘启跃 《机械》2013,(12):10-13,28
以Hertz接触理论为依据,利用ANSYS建立2D有限元计算模型,模拟原地打滑、完全制动等轮轨滑动摩擦接触行为。分析了轮轨静接触和滑动接触时接触应力分布情况,研究了接触状态、轴重、滑动速度、载荷类型和钢轨轨顶圆半径对接触应力的影响。结合Hertz接触理论计算结果、剥离损伤理论和自激振动理论进行了轮轨损伤分析。  相似文献   

7.
随钻扩眼工具与岩石摩擦接触的数值模拟研究   总被引:1,自引:0,他引:1  
对随钻扩眼工具与岩石间的摩擦接触进行了有限元分析,采用粘-滑摩擦模型模拟接触状态,并用罚函数与拉格朗日组合法进行求解,对随钻扩眼工具在扩眼钻进时的受力进行了模拟分析。数值计算的结果较真实地反映了随钻扩眼工具工作时,所受接触压力、有效应力和摩阻应力的分布变化情况,据此给出了实际可用的建议,研究结果获得了现场试验结论的支持,表明所提分析方法是有效的,为随钻扩眼工具的设计和使用提供了依据。  相似文献   

8.
The dynamic response of cracked isotropic plates subjected to impact loading is studied in this paper. The impact properties of cracked plate are compared with the virgin ones to predict the eventual presence of discontinuities in plates. The extended finite element method (X-FEM) is employed in the mathematical modeling of the impact problem, wherein the effects of shear deformation is considered. Conventional finite element without any discontinuity is initially conducted in the numerical implementation. Enriched functions are then added to the nodal displacement field for element nodes that contain cracks. The effects of crack length and crack position on contact force and on plate deflection are analyzed. Results show that the maximal contact force decreases as the deflection increases with increasing crack length a. The effect of crack position on the dynamic response is less pronounced when the crack is near the fixed end.  相似文献   

9.
In this paper, some elegant extended finite element method (XFEM) schemes for level set method structural optimization are proposed. Firstly, two- dimension (2D) and three-dimension (3D) XFEM schemes with partition integral method are developed and numerical examples are employed to evaluate their accuracy, which indicate that an accurate analysis result can be obtained on the structural boundary. Furthermore, the methods for improving the computational accuracy and efficiency of XFEM are studied, which include the XFEM integral scheme without quadrature sub-cells and higher order element XFEM scheme. Numerical examples show that the XFEM scheme without quadrature sub-cells can yield similar accuracy of structural analysis while prominently reducing the time cost and that higher order XFEM elements can improve the computational accuracy of structural analysis in the boundary elements, but the time cost is increasing. Therefore, the balance of time cost between FE system scale and the order of element needs to be discussed. Finally, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely used in the recent literature of structural topology optimization. All numerical results demonstrate that the proposed XFEM is a promising structural analysis approach for structural optimization with the level set method.  相似文献   

10.
基于接触有限元的齿轮-转子系统动态特性分析   总被引:1,自引:0,他引:1  
考虑齿轮-转子系统各部件的弹性,基于接触有限元理论提出一种能够高保真模拟齿轮副连续啮合过程的动态特性分析方法。该方法利用实体有限元进行系统建模,可体现各部件的结构特征;基于接触有限元进行啮合过程仿真,可模拟系统的时变刚度、啮合冲击等真实激励进而得到全面准确的响应信息。以一直齿轮-转子系统为例进行啮合过程的数值仿真,利用中心差分法求得系统各动力学参量在时域上的响应,通过中心距偏差、动态传递误差、动态接触力等参数分析系统的弯曲振动、扭转振动、齿轮副的啮合特性及其耦合关系。研究结果表明:考虑各部件尤其是转子的弹性后,系统的非线性振动特性显著,齿轮副啮合存在明显的双边冲击及脱啮现象。  相似文献   

11.
Friction behavior is a critical factor in brake system design and performance. For up-front design and system modeling it is desirable to describe the frictional behavior of a brake lining as a function of the local conditions such as contact pressure, temperature, and sliding speed. Typically, frictional performance is assessed using brake dynamometer testing of full-scale hardware, and the average friction value is then used for the remaining brake system development. This traditional approach yields a hardware-dependent, average friction coefficient that is unavailable in advance of component testing, ruling out true up-front design and leading to redundant lining screening tests. To address this problem, a reduced-scale inertial brake dynamometer was developed to determine the frictional characteristics of lining materials. Design of a reduced-scale dynamometer began with the choice of a scaling relation. In this case, the energy input per unit contact area was held constant between full-scale and reduced-scale hardware. All linear variables were thereby scaled by the square root of the scaling factor, while the pressure, temperature, sliding velocity, and deceleration were kept constant. Experimental validation of the scaling relations and the reduced-scale dynamometer focused on comparisons with full-scale dynamometer data, particularly the friction coefficient. If similar trends are observed between reduced-scale and full-scale testing, the reduced-scale dynamometer will become an important tool in the up-front design and modeling of brake systems.  相似文献   

12.
This paper reviews briefly some advances and applications in parametric quadratic programming (PQP) method for numerical modeling of elastoplastic contact problems. The parametric variational principle (PVP) and the corresponding finite element model for numerical simulation of 3D elastoplastic frictional contact problems with isotropic/anisotropic (orthotropic) friction law are presented. The finite element software JIFEX is then developed with the application-oriented concept for nonlinear analysis of complex structures in general purposed engineering. Some typical engineering applications such as compressor impeller and the railway wheel/rail contact analysis are shown to illustrate the potential of the software developed.  相似文献   

13.
旋转齿轮瞬时接触应力和温度的分析模拟   总被引:12,自引:0,他引:12  
建立了高速齿轮传动轮齿瞬时接触温度的分析方法和模型;采用赫兹接触理论和有限元接触分析方法分析了标准渐开线齿廓和齿顶修形齿廓的齿面接触压力;研究了啮合过程中轮齿的相对滑动速度和齿面摩擦因数以及摩擦热流密度的计算方法;建立了轮齿本体温度的有限元温度分析模型;计算了轮齿接触面的瞬时温升;分析了标准和齿顶修形渐开线齿轮的轮齿本体温度和瞬时接触温度及相关因素对它们的影响。  相似文献   

14.
Heat flow across the interface of solid bodies in contact is an important aspect in several engineering applications. This work presents a finite element model for the analysis of thermal contact, which takes into account the effect of contact pressure and gap dimension in the heat flow across the interface between two bodies. Additionally, the frictional heat generation is also addressed, which is dictated by the contact forces predicted by the mechanical problem. The frictional contact problem and thermal problem are formulated in the frame of the finite element method. A new law is proposed to define the interfacial heat transfer coefficient (IHTC) as a function of the contact pressure and gap distance, enabling a smooth transition between two contact status (gap and contact). The staggered scheme used as coupling strategy to solve the thermomechanical problem is briefly presented. Four numerical examples are presented to validate the finite element model and highlight the importance of the proposed law on the predicted temperature.  相似文献   

15.
某型号固体火箭发动机推力矢量控制系统的结构设计,必须保证在承受极端工作载荷时,喷管不能有大的轴向位移,阴、阳球与滚动体间具有一定的接触强度,同时不产生过量的塑性变形,属于复杂结构在复杂载荷作用下的弹塑性摩擦接触问题,无法解析计算且无法试验测量。为解决决定系统结构设计和功能发挥的接触承载性能这一关键问题,模拟系统冷试车试验,充分考虑材料表面强化层,建立各构件间的弹塑性摩擦接触模型。基于计算精度高的三维摩擦接触问题的Lagrange乘子法,解决了与弹塑性耦合的有限元计算问题。计算分析喷管位移,阴球、阳球与滚动体间的接触应力、摩擦应力、变形分布及材料破坏机理。通过与冷试车试验结果的对比分析,检验系统接触承载性能、有限元法及结果的正确性。为该型号推力矢量控制系统的设计提供一种更为高效、精确的计算方法。  相似文献   

16.
The effects of mechanical and thermal surface loadings on deformation of elastic–plastic semi-infinite medium were analyzed simultaneously by using the finite element method. Rigid rough surface of a magnetic head and smooth surface of an elastic–plastic hard disk were chosen to perform a comprehensive thermo-elastic–plastic contact analysis at the head–disk interface (HDI). A two-dimensional finite element model of a rigid rough surface characterized by fractal geometry sliding over an elastic–plastic medium was then developed. The evolution of deformation in the semi-infinite medium due to thermomechanical surface loading is interpreted in terms of temperature, von Mises equivalent stress, and equivalent plastic strain. In addition to this, the effects of friction coefficient, sliding, and interference distance on deformation behavior were also analyzed. It is shown that frictional heating increases not only the contact area but also the contact pressure and stresses.  相似文献   

17.
In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.  相似文献   

18.
Thermal damage caused by frictional heat of rolling-sliding contact is one of the most important failure forms of wheel and rail. Many studies of wheel-rail frictional heating have been devoted to the temperature field, but few literatures focus on wheel-rail thermal stress caused by frictional heating. However, the wheel-rail creepage is one of important influencing factors of the thermal stress In this paper, a thermo-mechanical coupling model of wheel-rail rolling-sliding contact is developed using thermo-elasto-plastic finite element method. The effect of the wheel-rail elastic creepage on the distribution of heat flux is investigated using the numerical model in which the temperature-dependent material properties are taken into consideration. The moving wheel-rail contact force and the frictional heating are used to simulate the wheel rolling on the rail. The effect of the creepage on the temperature rise, thermal strain, residual stress and residual strain under wheel-rail sliding-rolling contact are investigated. The investigation results show that the thermally affected zone exists mainly in a very thin layer of material near the rail contact surface during the rolling-sliding contact. Both the temperature and thermal strain of rail increase with increasing creepage. The residual stresses induced by the frictional heat in the surface layer of rail appear to be tensile. When the creepage is large, the frictional heat has a significant influence on the residual stresses and residual strains of rail. This paper develops a thermo-meehanical coupling model of wheel-rail rolling-sliding contact, and the obtained results can help to understand the mechanism of wheel/rail frictional thermal fatigue.  相似文献   

19.
金属成形数值模拟中的接触单元法   总被引:13,自引:1,他引:12  
给出了一种基于罚函数方法及库仑摩擦规律的点一面接触形式的接触单元法,根据等向滑动函数的概念,推导了粘着接触与滑动接触的接触单元刚度阵,由于这种方法在单元积分点引入接触约束,扩大了接触搜索面积,因而接计算更加稳定。数值计算表明该方法能得到较好的结果。  相似文献   

20.
In this paper, an upper-bound approach is used to analyze the extrusion process of bi-metallic tubes through dies of any shape with moving cylindrical shaped mandrel. A generalized kinematically admissible velocity field using spherical coordinate system is developed to evaluate the internal power and the power dissipated on frictional, velocity discontinuity surfaces and the total power. The extrusion process is also simulated using the finite element code, ABAQUS. Analytical results are compared with the results given by experiments of other researchers and also by the finite element method. These comparisons show a good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号