首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超声辅助真空装置制备石墨烯纳米片(GNPs)/聚乙二醇(PEG)复配改性剂,通过熔融共混法制备了一系列聚乳酸(PLA)/GNPs、PLA/GNPs/PEG复合材料,利用扫描电子显微镜(SEM)、X-射线衍射仪(XRD)、差示扫描量热仪(DSC)、偏光显微镜(POM)和万能试验机对其断面形貌、结晶行为和力学性能进行研究。结果表明,添加复配改性剂GNPs/PEG后,PLA基复合材料的断面出现明显的PLA纤维,呈现韧性断裂; GNPs或GNPs/PEG的添加未改变PLA的晶型,当GNPs/PEG为0. 1%时,PLA基复合材料的结晶度达到38. 50%,比纯PLA提高了27. 99%; GNPs/PEG的添加也有效地改善了PLA的拉伸强度和缺口冲击强度,分别比纯PLA的提高了13. 32%和51. 9%。  相似文献   

2.
以聚乳酸(PLA)和淀粉纳米晶(SNC)为主要原料,聚乙二醇(PEG)为增塑剂,采用溶剂蒸发法制备PLA/SNC和PLA/SNC/PEG复合材料,通过差示扫描量热仪(DSC)、热台偏光显微镜(PLM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)等研究了PEG对复合材料结晶行为、力学性能及界面相容性的影响。结果表明,PEG能够与SNC协同促进PLA结晶,使PLA/SNC/PEG复合材料的结晶速率明显提高;PEG的添加未改变PLA/SNC复合材料的结晶结构;随着PEG含量的增加,PLA/4 %(质量分数,下同)SNC复合材料的拉伸强度先升高后下降,断裂伸长率不断提高;当PEG含量为2 %时,PLA/4 %SNC/2 %PEG复合材料的力学性能最佳,拉伸强度为47.86 MPa,断裂伸长率为10.20 %,PLA与SNC间界面相容性得到改善。  相似文献   

3.
聚乳酸作为基体材料,通过研磨共混法制备了多壁碳纳米管(MWCNT)/聚乳酸(PLA)复合粒料,应用3D打印技术打印了PLA/MWCNT复合材料样条。通过对复合材料导电性能测试,结果表明随着MWCNT掺杂量的增加,复合材料的电导率数值呈指数型增长,当MWCNT含量达6%时,电导率为10~(-2) S/cm。力学性能测试得到在MWCNT含量为6%时,样条的拉伸强度达63.7 MPa,比纯的PLA材料提升37.6%;弯曲强度为126.7 MPa,提高了16.9%。扫描电子显微镜(SEM)观察发现MWCNT在PLA基体中较为分散,PLA/MWCNT复合样条断面呈现多孔蜂窝状。样品热分解温度高达390.2℃,耐热效果明显提升。  相似文献   

4.
《塑料》2018,(5)
采用溶剂置换法制备了分散均匀的氧化石墨烯(GO)/乙二醇(EG)溶液,进而通过原位聚合法制备了氧化石墨烯/聚对苯二甲酸乙二醇酯(GO/PET)复合材料,探讨了溶剂置换法对GO在溶剂中分散性能的影响,并研究了GO含量对PET基复合材料结构与性能的影响。结果表明,通过溶剂置换法预处理,再经原位聚合制备的GO/PET复合材料中的GO分散均匀,无明显团聚现象。随着GO含量的增加,复合材料的熔融温度和拉伸强度明显降低,但结晶温度与弹性模量明显提高。当GO含量为0. 01%时,拉伸强度最大,为52. 9 MPa,与纯PET相比,提高了12%;当GO含量为0. 5%时,弹性模量最大,为2 297. 2 MPa,比纯PET相比提高了16%。  相似文献   

5.
以聚乳酸(PLA)为原料,添加不同含量的麦秸秆纤维(WF),热压成型制备WF/PLA复合材料。通过傅立叶变换红外吸收光谱仪(FTIR)分析了木聚糖酶、果胶酶、淀粉酶处理前后WF化学官能团变化,研究了WF添加量以及不同生物酶处理WF对WF/PLA复合材料力学性能、吸湿吸水性能的影响,观察其断面微观结构。结果表明:FTIR显示生物酶可溶解WF中纤维素、表面脂类物质等。随着WF添加量的增加,未处理WF/PLA复合材料的拉伸强度呈下降趋势,当WF质量分数为7%时,WF/PLA复合材料的冲击强度最高为6.961 kJ/m2,平衡吸湿率最低为1.29%。当WF添加量为7%时,经果胶酶处理的WF/PLA复合材料力学性能最好,其拉伸强度、冲击强度分别为16.89、8.456 MPa;平衡吸湿率最低为0.56%,24 h吸水率最低为1.18%。断面微观结构显示,相比于未处理,经酶处理后的WF与PLA界面结合较好,其中经果胶酶处理后两者界面结合性最好。  相似文献   

6.
聚乳酸/聚己内酯共混材料的性能研究   总被引:2,自引:0,他引:2  
采用熔融共混的方法制备了聚乳酸(PLA)/聚己内酯(PCL)共混材料,研究了PLA/PCL共混材料的动态力学性能、力学性能、热性能和微观形貌。结果表明,制备的PLA/PCL共混材料为部分相容体系;材料拉伸强度随PCL含量的增加先增加后降低,当PCL质量分数为30%时,材料的拉伸强度为55.9 MPa,比纯PLA提高了8%;冲击强度随PCL含量的增加而增大,当PCL质量分数为50%时,材料的冲击强度为14.7 kJ/m2,比纯PLA提高了2.5倍。  相似文献   

7.
以低分子量聚乙二醇(PEG)为增塑剂,马来酸酐改性的甘蔗纤维(MSF)为成核剂,采用熔融共混的方式制备PLA/MSF/PEG复合材料,并对复合材料的结晶行为、晶体形貌、力学和表面亲水性进行研究。结果表明:表面改性的MSF可作为异相成核剂,显著提高PLA的结晶能力;增塑剂PEG和成核剂MSF的协同加入,能够进一步提高PLA的结晶速率,并增大球晶尺寸。增塑剂PEG的加入,能够明显提高PLA/MSF/PEG的断裂伸长率,但使复合材料的拉伸强度和模量下降。与PLA/PEG共混物相比,PLA/MSF/PEG共混物具有更高的拉伸强度和模量。PLA/MSF(3%)/PEG(10%)的综合性能较好,与纯PLA相比断裂伸长率提高468.7%,拉伸强度降低48.7%左右。因此,增塑剂PEG与改性纤维MSF协同改性,使PLA/MSF/PEG共混物具有更优异的力学性能和结晶性能,能够进一步扩大PLA材料的应用范围。  相似文献   

8.
以聚己内酯(PCL)和聚乳酸(PLA)为实验原料,分别配比PCL质量分数在10%,20%和30%的PLA/PCL混合料,再经双螺杆挤出机挤出造粒后得到PLA/PCL复合材料。分别以纯PLA和3种不同配比的PLA/PCL复合材料为实验原料,使用粒料3D打印机制备拉伸、弯曲和冲击试件,并进行力学性能测试。结果表明,纯PLA试件的拉伸强度最大,为50.64 MPa,随着PCL含量的增加,试件的拉伸强度逐渐下降;试件的断裂伸长率随着PCL的含量的增加先增高后降低,当PCL质量分数为20%时,断裂伸长率达到最大值为25%;试件的弯曲强度随PCL含量的增加逐渐下降;试件的冲击强度随PCL含量的增加逐渐增大,当PCL质量分数为30%时,试件的冲击强度达到最大值,为15.80 kJ/m~2。  相似文献   

9.
以改进的Hummers法制备还原氧化石墨烯(RGO),以RGO和碱式硫酸镁晶须(MHSHw)为填料,采用机械球磨法制备RGO/MHSHw/PVC复合粉料,经平板硫化机热压成型得三相复合板材。考察了RGO和MHSHw对复合材料电阻率、阻燃性能及力学性能的影响。结果表明:RGO具有很好的片层结构和导电性;当MHSHw添加量为5%,RGO添加量为1%时,RGO/MHSHw/PVC复合板材的表面电阻率为4×106Ω/square,比纯PVC下降8个数量级,达到了商业抗静电效果,拉伸强度达到最大值17.61 MPa,比纯PVC提高了44.04%,复合板材氧指数>33%,具有阻燃性能,得到力学性能优良兼具有抗静电和阻燃性能的复合材料。  相似文献   

10.
利用可降解性高分子聚乳酸(PLA)及聚丁二酸丁二醇酯(PBS)制备PLA/PBS生物降解复合材料。通过添加紫外线吸收剂和受阻胺类光稳定剂,以模拟自然光源方法对材料进行加速室外老化测试,分析户外照明条件下复合纤维的使用寿命。研究了材料复合比例及双螺杆混炼工艺参数对PLA/PBS/Additives复合材料性能的影响,并探讨复合材料的耐候性、热性能及力学性能。结果表明,与纯PLA相比较,复合材料的弯曲强度仅降低了6.04%,而拉伸强度冲击强度分别提高了18.51%及32.73%,且经过960 h的紫外线加速老化试验,其拉伸强度保持率为95.72%,比纯PLA高45.56%。延伸率保持率为90.14%,比纯PLA高33.95%。其次,将该复合材料通过激光熔融静电纺丝法取得初生纤维,利用反应曲面法建立回归模型,结合多目标粒子群算法针对模型及工艺参数做优化处理。结果表明,该复合材料的纤维强度相较于同为生物可分解材料的PLA/PBS/Additives复合材料,其纤维强度和断裂伸长率分别提升了52.8%和26.08%。  相似文献   

11.
将膨胀石墨(EG)/硬脂酸(SA)通过高温膨胀制得部分氧化的石墨烯(p-GO),并将p-GO与聚乙二醇(PEG)在超声振荡耦合真空灌注作用下制备出p-GO/PEG复配成核剂,利用双螺杆挤出机熔融共混制备一系列聚乳酸(PLA)/p-GO/PEG复合材料,并对其进行傅立叶变换红外光谱、广角X射线衍射、扫描电子显微镜、差示扫描量热、热失重分析、力学性能等测试。结果表明,高温膨胀法能够在很大程度上将EG充分剥离并部分氧化;p-GO对复合材料的结晶行为有着明显的促进作用,但含量过多易引起团聚现象;与纯PLA相比,当p-GO质量分数为0.6%时,PLA/p-GO复合材料的拉伸强度提高了4.9%,悬臂梁缺口冲击强度提高了48.4%,初始热分解温度提高了7.88℃;而相应的PLA/p-GO/PEG复合材料的拉伸强度提高了7.5%,悬臂梁缺口冲击强度提高了51.6%,初始热分解温度提高了9.4℃。  相似文献   

12.
利用聚乙二醇(PEG)、聚丁二酸丁二醇酯(PBS)对聚乳酸(PLA)/剑麻纤维(SF)复合材料进行增韧改性,PLA/SF复合体系与增韧剂PEG、PBS密炼共混后,经模压制备PL/A/SF纤维复合材料.通过正交实验,考察PEG含量、PBS含量、硬脂酸含量以及密炼温度对复合材料力学性能的影响.结果表明:PEG的含量对复合材料韧性的影响最显著.PBS的含量和硬脂酸的含量对复合材料冲击性能的影响比较显著,但对其断裂伸长率和拉伸强度的影响不显著.温度对复合材料的冲击性能和拉伸强度几乎没影响,但对其断裂伸长率的影响比较显著.  相似文献   

13.
《塑料》2017,(2)
利用注塑机制备了PLA/PBS/秸秆粉可生物降解木塑复合样条,通过电镜扫描(SEM)和力学性能测试,探讨了不同含量的马来酸酐接枝聚乳酸(MAPLA)、5%硅烷处理秸秆粉以及2种相容剂同时加入对PLA/PBS/秸秆粉可生物降解木塑复合材料力学性能和断面微观结构形态的影响。结果表明:当MAPLA含量为5%时,弯曲强度和拉伸强度最大,分别为20.51 MPa和19.03 MPa,较未添加时分别提高了146.72%和118.07%。当MAPLA含量为3%时,冲击强度最大,为20.36 kJ/m~2,较未添加时提高了36.19%。5%硅烷和5%MAPLA组合处理对PLA/PBS/秸秆粉木塑复合材料界面相容性有显著的改善,但对木塑复合材料力学性能的提高不是很明显。  相似文献   

14.
以聚己内酯(PCL)和聚乳酸(PLA)共混物为基材,竹纤维(BF)作为增强材料,硅烷偶联剂为改性剂,通过模压成型制备了PCL/PLA/BF复合材料。研究了PCL和PLA质量比、BF质量分数、硅烷偶联剂用量以及模压温度对复合材料性能影响。结果表明,适宜的PCL/PLA质量比为1∶1,BF质量分数为40 %时BF/PCL/PLA复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值11.26 kJ/m2,12.68 MPa和5.2 %;硅烷偶联剂用量为1 %时复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值15.11 kJ/m2、13.15 MPa和5.8 %;模压温度为150 ℃时,复合材料的冲击强度、拉伸强度和断裂伸长率分别达到最大值14.51 kJ/m2、13.75 MPa和5.8 %。  相似文献   

15.
《塑料》2017,(3)
以300目短切碳纤维(CF)和聚乳酸(PLA)为实验原料,分别配制CF质量分数为5%、10%、15%和20%的CF/PLA混合料,再经双螺杆挤出机挤出造粒后得到CF/PLA复合材料。分别以纯PLA和不同组分的CF/PLA复合材料为实验材料,在粒料3D打印机上制备抗拉伸、压缩、弯曲和冲击试样,并做力学性能测试。实验结果表明,随着CF含量的增加,材料最大拉伸强度呈先增大后减小的趋势,当CF含量为5%时,材料的平均拉伸强度最大,为48.45 MPa。材料的平均弯曲和压缩强度随CF含量的增加均呈先减小后增大再减小的趋势,且无CF填充时,二者的强度值最大,分别为114.77 MPa和103.94 MPa。材料的抗冲击强度随着CF含量的增大呈先增大后减小的趋势,当CF含量为5%时,材料的抗冲击强度最大,为14.49 kJ/m~2。  相似文献   

16.
利用熔融共混的方法,以聚乳酸(PLA)为基材,填充木质素和木粉对其力学性能进行增强,通过控制木质素和木粉的比例制备了5种不同的木质素/木粉/聚乳酸复合材料。通过FTIR、XRD、TGA、SEM等测试方法研究了木质素含量、木粉含量对复合材料界面相容性、热性能、力学性能以及吸水率的影响。结果表明:以70%PLA作为基体,木质素与木粉以7∶3的质量比例填充30%到PLA中,此时复合材料的界面相容性较好,综合力学性能优异,其中拉伸强度和弯曲强度分别达到最高,为65. 59和5 916. 04 MPa,弯曲模量为124. 53 MPa;饱和吸水率表现出较好的吸水性能,为5. 72%。该研究结果对木质素/木粉/PLA复合体系的研究与应用具有一定的参考作用。  相似文献   

17.
对生物可降解材料聚乳酸(PLA)与聚己二酸对苯二甲酸丁二酯(PBAT)及有机蒙脱土(OMMT)材料进行共混,采用挤出成型制备PLA/PBAT/OMMT线材,再采用快速成型制备标准试样,通过对样件的力学性能、结晶行为、断面形貌和表观质量的测试和分析得出:纯PLA的拉伸强度和断裂伸长率分别为7.42MPa和1.8%,表现出硬而脆的特点;PLA/PBAT共混后,随着PBAT含量的增加,共混材料的断裂伸长率以及冲击强度不断提高,当PBAT含量为60%时,共混物的断裂伸长率达到405%,材料的冲击强度为31.11kJ/m2,约为纯PLA的11倍;而共混材料的拉伸强度表现出先增后减的趋势,当PBAT含量约为30%时,拉伸强度最佳,为37.08MPa;加入2%含量的OMMT后,共混材料的综合力学性能较之前又有不同程度的提高,其中拉伸强度以及冲击强度提升的较为明显;通过差示扫描量热和扫描电镜分析,PLA/PBAT共混体系为不相容体系,两相界面存在大量的孔洞,且结晶性能差,为半结晶聚合物,OMMT的加入使PLA/PBAT的两相界面变得模糊,极大地改善他们的相容性,而且还提高了共混物的结晶度;通过观察打印制件的表观质量,当PBAT的含量在30%左右,综合快速成型性能最佳。  相似文献   

18.
将与聚乳酸(PLA)化学接枝改性的环氧大豆油(ECP)和乙酰柠檬酸三丁酯(ATBC)作为复合增塑剂,改变ECP和ATBC的含量与PLA熔融共混制备PLA/ECP/ATBC三元共混复合材料,通过差式扫描量热仪、热变形温度测定仪、万能拉伸试验机、水接触角测定仪、洛氏硬度计考察了PLA/ECP/ATBC复合材料的热稳定性、力学性能和亲疏水性能。结果表明,复合材料结晶度最大为14.07%,是纯PLA的8.96倍;缺口冲击强度最大为4.59 kJ/m~2,比纯PLA提高了99.57%;断裂伸长率最大为167.2%,是纯PLA的50.21倍;改变ECP和ATBC的含量可以调节PLA复合材料的亲疏水能力和雾度,能为PLA基体与其他亲水亲油类材料的相容性改性拓宽思路,雾度的改变使PLA基复合材料可以用作光扩散剂,有助于拓展PLA材料的应用范围。  相似文献   

19.
《塑料科技》2017,(5):64-68
采用熔融共混法,以邻苯二甲酸二辛酯(DOP)作为增塑剂,将中药渣(CMR)与聚乳酸(PLA)共混,经注塑成型工艺制备PLA/CMR复合材料。通过吸水率、FTIR、力学性能、热重分析及SEM等分析手段研究了PLA/CMR复合材料水热老化后的性能。结果表明:温度对PLA/CMR复合材料老化行为影响较为显著,复合材料在60℃水热老化8天后,其弯曲强度和拉伸强度分别降低了88.3%和87.8%;在90℃水热老化15 h后,其弯曲强度和拉伸强度分别降低了97.8%和92.8%,在水热老化20 h后,材料的机械强度完全丧失。  相似文献   

20.
以石墨烯(GNPs)为填料对聚丙烯(PP)进行改性,通过球磨和熔融挤出共混的方法制备了一系列不同GNPs含量的GNPs/PP复合材料。用X射线衍射、扫描电子显微镜、电导率测试及拉伸测试等手段对复合材料的结构和性能进行表征分析,研究GNPs含量对复合材料性能的影响。结果表明:随着GNPs含量的增加,复合材料的电导率逐渐增大;当GNPs质量分数为15%时,复合材料的电导率达到0. 127 S/cm;复合材料的电阻逾渗阈值在GNPs质量分数为5%~8%之间。在力学性能方面,随着GNPs含量的增加,复合材料的拉伸强度呈现出先增加后降低的趋势;当GNPs质量分数为3%时,复合材料的拉伸强度达到最大,为35. 658 MPa,比纯PP提高了21. 04%;复合材料的弹性模量随着GNPs含量的增加而增加,在GNPs质量分数为15%时,复合材料的弹性模量比纯PP提高了89. 6%,达到2 068. 54 MPa。本文对制备高导电和高强度的导电聚合物或者导电纤维母粒可以提供一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号