首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Unit cell homogenization techniques together with the finite element method are very effective for computing equivalent mechanical properties of composites and heterogeneous materials systems. For systems with very complicated material arrangements, traditional, manual mesh generation can be a considerable obstacle to usage of these techniques. This problem is addressed here by developing automated meshing techniques that start from a hierarchical quad‐tree (in 2D) or oc‐tree (in 3D) mesh of pixel or voxel elements. From the pixel/voxel mesh, algorithms are presented for successive element splitting and nodal shifting to arrive at final meshes that accurately capture both material arrangements and constituent volume fractions, and the material‐scale stress and strain fields within the composite under different modalities of loading. The performance and associated convergence behaviour of the proposed techniques are demonstrated on both densely packed fibre and particulate composites, and on 3D textile‐reinforced composites. Copyright © 2003 John Wiley Sons, Ltd.  相似文献   

2.
An s‐adaptive finite element procedure is developed for the transient analysis of 2‐D solid mechanics problems with material non‐linearity due to progressive damage. The resulting adaptive method simultaneously estimates and controls both the spatial error and temporal error within user‐specified tolerances. The spatial error is quantified by the Zienkiewicz–Zhu error estimator and computed via superconvergent patch recovery, while the estimation of temporal error is based on the assumption of a linearly varying third‐order time derivatives of the displacement field in conjunction with direct numerical time integration. The distinguishing characteristic of the s‐adaptive procedure is the use of finite element mesh superposition (s‐refinement) to provide spatial adaptivity. Mesh superposition proves to be particularly advantageous in computationally demanding non‐linear transient problems since it is faster, simpler and more efficient than traditional h‐refinement schemes. Numerical examples are provided to demonstrate the performance characteristics of the s‐adaptive method for quasi‐static and transient problems with material non‐linearity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In the present study, a hexahedral mesh generator was developed for remeshing in three‐dimensional metal forming simulations. It is based on the master grid approach and octree‐based refinement scheme to generate uniformly sized or locally refined hexahedral mesh system. In particular, for refined hexahedral mesh generation, the modified Laplacian mesh smoothing scheme mentioned in the two‐dimensional study (Part I) was used to improve the mesh quality while also minimizing the loss of element size conditions. In order to investigate the applicability and effectiveness of the developed hexahedral mesh generator, several three‐dimensional metal forming simulations were carried out using uniformly sized hexahedral mesh systems. Also, a comparative study of indentation analyses was conducted to check the computational efficiency of locally refined hexahedral mesh systems. In particular, for specification of refinement conditions, distributions of effective strain‐rate gradient and posteriori error values based on a Z2 error estimator were used. From this study, it is construed that the developed hexahedral mesh generator can be effectively used for three‐dimensional metal forming simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A general method for the post‐processing treatment of high‐order finite element fields is presented. The method applies to general polynomial fields, including discontinuous finite element fields. The technique uses error estimation and h‐refinement to provide an optimal visualization grid. Some filtering is added to the algorithm in order to focus the refinement on a visualization plane or on the computation of one single iso‐zero surface. 2D and 3D examples are provided that illustrate the power of the technique. In addition, schemes and algorithms that are discussed in the paper are readily available as part of an open source project that is developed by the authors, namely Gmsh. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Adaptive algorithms are important tools for efficient finite‐element mesh design. In this paper, an error controlled adaptive mesh‐refining algorithm is proposed for a non‐conforming low‐order finite‐element method for the Reissner–Mindlin plate model. The algorithm is controlled by a reliable and efficient residual‐based a posteriori error estimate, which is robust with respect to the plate's thickness. Numerical evidence for this and the efficiency of the new algorithm is provided in the sense that non‐optimal convergence rates are optimally improved in our numerical experiments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The proposed methodology is based on the use of the adaptive mesh refinement (AMR ) techniques in the context of 2D shape optimization problems analysed by the finite element method. A suitable and very general technique for the parametrization of the optimization problem, using B-splines to define the boundary, is first presented. Then mesh generation, using the advancing frontal method, the error estimator and the mesh refinement criterion are studied in the context of shape optimization problems In particular, the analytical sensitivity analysis of the different items ruling the problem (B-splines. finite element mesh, structural behaviour and error estimator) is studied in detail. The sensitivities of the finite element mesh and error estimator permit their projection from one design to the next one leading to an a priori knowledge of the finite element error distribution on the new design without the necessity of any additional structural analysis. With this information the mesh refinement criterion permits one to build up a finite element mesh on the new design with a specified and controlled level of error. The robustness and reliability of the proposed methodology is checked by means of several examples.  相似文献   

7.
The adaptive finite element methods developed by the authors for a class of 2‐D problems in computational electromagnetics are presented. The cases covered are: magnetostatic, electrostatic, DC conduction and linear AC steady‐state eddy currents, both plane and axialsymmetric. Theory is developed in the linear case only, but the resulting methods are applied on a heuristic basis also to non‐linear cases and prove able to cope with them. These methods make use of an element‐by‐element error estimation and two different h‐refinement techniques to adapt meshes made up of first or second‐order triangular elements. Element‐by‐ element error estimation has two main advantages: it is well suited to cope with the intricate geometries of electromagnetic devices and, at the same time, very cheap from a computational viewpoint. The local error is estimated by approximately solving a differential problem in each element. Theory on which this error estimation method is grounded is developed in full details and the underlying assumptions are pointed out. The presence in electromagnetic problems of surface currents and interfaces between different materials poses new problems in the error estimation with respect to other applications in which similar methods are used. The h‐refinement technique can be selected between the bisection method and the centroid method followed by a Delaunay step. Accuracy and efficiency of the proposed method is discussed on the basis of previous work of the authors and further numerical experiments. Applications to realistic models showing good performances of the proposed methods are reported. Copyright © 1999 John wiley & Sons, Ltd.  相似文献   

8.
We describe how wavelets constructed out of finite element interpolation functions provide a simple and convenient mechanism for both goal‐oriented error estimation and adaptivity in finite element analysis. This is done by posing an adaptive refinement problem as one of compactly representing a signal (the solution to the governing partial differential equation) in a multiresolution basis. To compress the solution in an efficient manner, we first approximately compute the details to be added to the solution on a coarse mesh in order to obtain the solution on a finer mesh (the estimation step) and then compute exactly the coefficients corresponding to only those basis functions contributing significantly to a functional of interest (the adaptation step). In this sense, therefore, the proposed approach is unified, since unlike many contemporary error estimation and adaptive refinement methods, the basis functions used for error estimation are the same as those used for adaptive refinement. We illustrate the application of the proposed technique for goal‐oriented error estimation and adaptivity for second and fourth‐order linear, elliptic PDEs and demonstrate its advantages over existing methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we propose a three‐dimensional (3D) grayscale‐free topology optimization method using a conforming mesh to the structural boundary, which is represented by the level‐set method. The conforming mesh is generated in an r‐refinement manner; that is, it is generated by moving the nodes of the Eulerian mesh that maintains the level‐set function. Although the r‐refinement approach for the conforming mesh generation has many benefits from an implementation aspect, it has been considered as a difficult task to stably generate 3D conforming meshes in the r‐refinement manner. To resolve this task, we propose a new level‐set based r‐refinement method. Its main novelty is a procedure for minimizing the number of the collapsed elements whose nodes are moved to the structural boundary in the conforming mesh; in addition, we propose a new procedure for improving the quality of the conforming mesh, which is inspired by Laplacian smoothing. Because of these novelties, the proposed r‐refinement method can generate 3D conforming meshes at a satisfactory level, and 3D grayscale‐free topology optimization is realized. The usefulness of the proposed 3D grayscale‐free topology optimization method is confirmed through several numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper extends the gradient‐inelastic (GI) beam theory, introduced by the authors to simulate material softening phenomena, to further account for geometric nonlinearities and formulates a corresponding force‐based (FB) frame element computational formulation. Geometric nonlinearities are considered via a rigorously derived finite‐strain beam formulation, which is shown to coincide with Reissner's geometrically nonlinear beam formulation. The resulting finite‐strain GI beam theory: (i) accounts for large strains and rotations, unlike the majority of geometrically nonlinear beam formulations used in structural modeling that consider small strains and moderate rotations; (ii) ensures spatial continuity and boundedness of the finite section strain field during material softening via the gradient nonlocality relations, eliminating strain singularities in beams with softening materials; and (iii) decouples the gradient nonlocality relations from the constitutive relations, allowing use of any material model. On the basis of the proposed finite‐strain GI beam theory, an exact FB frame element formulation is derived, which is particularly novel in that it: (a) expresses the compatibility relations in terms of total strains/displacements, as opposed to strain/displacement rates that introduce accumulated computational error during their numerical time integration, and (b) directly integrates the strain‐displacement equations via a composite two‐point integration method derived from a cubic Hermite interpolating polynomial to calculate the displacement field over the element length and, thus, address the coupling between equilibrium and strain‐displacement equations. This approach achieves high accuracy and mesh convergence rate and avoids polynomial interpolations of individual section fields, which often lead to instabilities with mesh refinements. The FB formulation is then integrated into a corotational framework and is used to study the response of structures, simultaneously accounting for geometric nonlinearities and material softening. The FB formulation is further extended to capture member buckling triggered by minor perturbations/imperfections of the initial member geometry.  相似文献   

11.
In this study, a new automatic adaptive refinement procedure for thin‐walled structures using 3D solid elements is suggested. This procedure employs a specially designed superconvergent patch recovery (SPR) procedure for stress recovery, the Zienkiewicz and Zhu (Z–Z) error estimator for the a posteriori error estimation, a new refinement strategy for new element size prediction and a special mesh generator for adaptive mesh generation. The proposed procedure is different from other schemes in such a way that the problem domain is separated into two distinct parts: the shell part and the junction part. For stress recovery and error estimation in the shell part, special nodal coordinate systems are used and the stress field is separated into two components. For the refinement strategy, different procedures are employed for the estimation of new element sizes in the shell and the junction parts. Numerical examples are given to validate the effectiveness of the suggested procedure. It is found that by using the suggested refinement procedure, when comparing with uniform refinement, higher convergence rates were achieved and more accurate final solutions were obtained by using fewer degrees of freedoms and less amount of computational time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The finite cell method is a fictitious domain approach based on hierarchical Ansatz spaces of higher order. The method avoids time‐consuming and often error‐prone mesh‐generation and favorably exploits Cartesian grids to embed structures of complex geometry in a simple‐shaped computational domain thus shifting parts of the computational effort from mesh generation to the computation within the embedding finite cells of regular shape. This paper presents an effective integration approach for voxel‐based models of linear elasticity that drastically reduces the computational effort on cell level. The applied strategy allows the pre‐computation of an essential part of the cell matrices and vectors of higher order, representing stiffness and load, respectively. Several benchmark problems show the potential of the proposed method in particular for heterogeneous material properties as common in biomedical applications based on computer tomography scans. The applied strategy ensures a fast computation for time‐critical simulations and even allows user‐interactive simulations for models of moderate size at a high level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Computer‐aided mesh generation (CAMG) dictated solely by the minimal key set of requirements of geometry, material, loading and support condition can produce ‘mega‐sized’, arbitrary‐shaped distorted elements. However, this may result in substantial cost saving and reduced bookkeeping for the subsequent finite element analysis (FEA) and reduced engineering manpower requirement for final quality assurance. A method, denoted as c‐type, has been proposed by constructively defining a finite element space whereby the above hurdles may be overcome with a minimal number of hyper‐sized elements. Bezier (and de Boor) control vectors are used as the generalized displacements and the Bernstein polynomials (and B‐splines) as the elemental basis functions. A concomitant idea of coerced parametry and inter‐element continuity on demand unifies modelling and finite element method. The c‐type method may introduce additional control, namely, an inter‐element continuity condition to the existing h‐type and p‐type methods. Adaptation of the c‐type method to existing commercial and general‐purpose computer programs based on a conventional displacement‐based finite element method is straightforward. The c‐type method with associated subdivision technique can be easily made into a hierarchic adaptive computer method with a suitable a posteriori error analysis. In this context, a summary of a geometrically exact non‐linear formulation for the two‐dimensional curved beams/arches is presented. Several beam problems ranging from truly three‐dimensional tortuous linear curved beams to geometrically extremely non‐linear two‐dimensional arches are solved to establish numerical efficiency of the method. Incremental Lagrangian curvilinear formulation may be extended to overcome rotational singularity in 3D geometric non‐linearity and to treat general material non‐linearity. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A gradient‐based adaptation procedure is proposed in this paper. The relative error in the total strain energy from two adjacent adaptation stages is used as a stop‐criterion. The refinement–coarsening process is guided by the gradient of strain energy density, based on the assumption: a larger gradient needs a richer mesh and vice versa. The procedure is then implemented in the element‐free Galerkin method for linear elasto‐static problems. Numerical examples are presented to show the performance of the proposed procedure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
An efficient parallel computing method for high‐speed compressible flows is presented. The numerical analysis of flows with shocks requires very fine computational grids and grid generation requires a great deal of time. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed seamlessly in parallel in terms of nodes. Local finite‐element mesh is generated robustly around each node, even for severe boundary shapes such as cracks. The algorithm and the data structure of finite‐element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. The inter‐processor communication is minimized by renumbering the nodal identification number using ParMETIS. The numerical scheme for high‐speed compressible flows is based on the two‐step Taylor–Galerkin method. The proposed method is implemented on distributed memory systems, such as an Alpha PC cluster, and a parallel supercomputer, Hitachi SR8000. The performance of the method is illustrated by the computation of supersonic flows over a forward facing step. The numerical examples show that crisp shocks are effectively computed on multiprocessors at high efficiency. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a comprehensive account on using mesh‐free methods to simulate strain localization in inelastic solids is presented. Using an explicit displacement‐based formulation in mesh‐free computations, high‐resolution shear‐band formations are obtained in both two‐dimensional (2‐D) and three‐dimensional (3‐D) simulations without recourse to any mixed formulation, discontinuous/incompatible element or special mesh design. The numerical solutions obtained here are insensitive to the orientation of the particle distributions if the local particle distribution is quasi‐uniform, which, to a large extent, relieves the mesh alignment sensitivity that finite element methods suffer. Moreover, a simple h‐adaptivity procedure is implemented in the explicit calculation, and by utilizing a mesh‐free hierarchical partition of unity a spectral (wavelet) adaptivity procedure is developed to seek high‐resolution shear‐band formations. Moreover, the phenomenon of multiple shear band and mode switching are observed in numerical computations with a relatively coarse particle distribution in contrast to the costly fine‐scale finite element simulations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
An adaptive refinement scheme is presented to reduce the geometry discretization error and provide higher‐order enrichment functions for the interface‐enriched generalized FEM. The proposed method relies on the h‐adaptive and p‐adaptive refinement techniques to reduce the discrepancy between the exact and discretized geometries of curved material interfaces. A thorough discussion is provided on identifying the appropriate level of the refinement for curved interfaces based on the size of the elements of the background mesh. Varied techniques are then studied for selecting the quasi‐optimal location of interface nodes to obtain a more accurate approximation of the interface geometry. We also discuss different approaches for creating the integration sub‐elements and evaluating the corresponding enrichment functions together with their impact on the performance and computational cost of higher‐order enrichments. Several examples are presented to demonstrate the application of the adaptive interface‐enriched generalized FEM for modeling thermo‐mechanical problems with intricate geometries. The accuracy and convergence rate of the method are also studied in these example problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A novel finite element (FE) formulation with adaptive mesh rezoning for large deformation problems is proposed. The proposed method takes the advantage of the selective smoothed FE method (S‐FEM), which has been recently developed as a locking‐free FE formulation with strain smoothing technique. We adopt the selective face‐based smoothed/node‐based smoothed FEM (FS/NS‐FEM‐T4) and edge‐based smoothed/node‐based smoothed FEM (ES/NS‐FEM‐T3) basically but modify them partly so that our method can handle any kind of material constitutive models other than elastic models. We also present an adaptive mesh rezoning method specialized for our S‐FEM formulation with material constitutive models in total form. Because of the modification of the selective S‐FEMs and specialization of adaptive mesh rezoning, our method is locking‐free for severely large deformation problems even with the use of tetrahedral and triangular meshes. The formulation details for static implicit analysis and several examples of analysis of the proposed method are presented in this paper to demonstrate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. This paper develops a stress recovery procedure based on a modal interpretation of the scaled boundary finite‐element method solution process, using the superconvergent patch recovery technique. The recovered stresses are superconvergent, and are used to calculate a recovery‐type error estimator. A key feature of the procedure is the compatibility of the error estimator with the standard recovery‐type finite element estimator, allowing the scaled boundary finite‐element method to be compared directly with the finite element method for the first time. A plane strain problem for which an exact solution is available is presented, both to establish the accuracy of the proposed procedures, and to demonstrate the effectiveness of the scaled boundary finite‐element method. The scaled boundary finite‐element estimator is shown to predict the true error more closely than the equivalent finite element error estimator. Unlike their finite element counterparts, the stress recovery and error estimation techniques work well with unbounded domains and stress singularities. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号