首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A novel starch-graft-acrylamide/mineral powder superabsorbent composite with water absorbency about 4000 times is synthesized by graft-copolymerization reaction among acrylamide, potato starch and mineral ultrafinepowder, followed by hydrolysis with sodium hydroxide. It is found that the composite doped with kaolinite powder possess higher water absorbency than those doped with bentonite or sercite powder, since the kaolinite powder can moderately disperse in the water and cross-link with acrylamide and starch. By controlling the amount of NaOH and reaction time during saponification process, the hydrophilic groups on the composite can be adjusted, it is found that the collaborative absorbent effect of −CONH2, −COONa and −COOH groups is superior to that of single −CONH2, −COONa or −COOH group. By the IR characterization, the polymerization reaction mechanism and structure of the composite is supposed, the mineral ultrafinepowder as a cross-linking point play an important role in the formation of network structure of the superabsorbent composite.  相似文献   

2.
A novel poly(acrylate‐co‐acrylamide)/expanded vermiculite (EVMT) superabsorbent composite was synthesized by aqueous solution polymerization method. The water absorbency of the superabsorbent composite still reaches 850 g/g when 50 wt % EVMT is added, which is significant in decreasing the production cost of the superabsorbent composites. By controlling the molar ratio of acrylic acid monomer and acrylamide monomer, and neutralization degree of acrylic acid, the hydrophilic groups on the composite can be adjusted, and it is found that the collaborative absorbent effect of ? CONH2, ? COOK, and ? COOH groups is superior to that of single ? CONH2, ? COOK, or ? COOH group. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 735–739, 2007  相似文献   

3.
A novel superabsorbent composite from acrylamide (AM) and attapulgite (APT), polyacrylamide/attapulgite (PAM/APT), was prepared by polymerizing AM with the existence of APT in aqueous solution, and then saponified with NaOH solution. Considering the impacts of hydrophilic groups (? COONa, ? COOH, and ? CONH2) on properties of the PAM/APT composite, the effects of saponification mode, molar ratio of NaOH to AM and saponification time on water absorbency, hydrophilic group content, and surface morphology were investigated systematically. The results indicate that the two‐step adding NaOH mode is superior to that of the one‐step mode. Among the superabsorbent composite incorporated with 30 wt% APT, the composite saponified at 95°C for 2 h with the molar ratio of 0.6 for NaOH to AM acquired the highest water absorbencies of 1715g g?1 and 87.8g g?1 in distilled water and in 0.9 wt% NaCl solution, respectively. The molar ratio of various hydrophilic groups at this time was 10:3:11 for ? COONa, ? COOH, and ? CONH2 determined using linear potentiometric titration method. POLYM. ENG. SCI. 46:1762–1767, 2006. © 2006 Society of Plastics Engineers.  相似文献   

4.
A novel starch‐graft‐poly(acrylamide)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of starch, acrylamide (AM), and attapulgite micropowder using N.N‐methylene‐bisacrylamide (MBA) as a crosslinker and ammonium persulphate (APS) as an initiator in aqueous solution, followed by hydrolysis with sodium hydroxide. The effects on water absorbency, such as amount of crosslinker, initiator, attapulgite, weight ratio of acrylamide to starch in the feed, gelatinization conditions of starch and molar ratio of NaOH to acrylamide, and so forth, were investigated. These superabsorbent composites were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The water absorbencies for these superabsorbent composites in water and saline solution were investigated, and water retention tests were carried out. Results obtained from this study showed that the water absorbency of superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibit absorption of 1317 g H2O/g sample and 68 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1351–1357, 2005  相似文献   

5.
A novel N‐succinylchitosan‐graft‐polyacrylamide/attapulgite composite hydrogel was prepared by using N‐succinylchitosan, acrylamide and attapulgite through inverse suspension polymerization. The result from FTIR spectra showed that ? OH of attapulgite, ? OH and ? NHCO of N‐succinylchitosan participated in graft polymerization with acrylamide. The introduced attapulgite could enhance thermal stability of the hydrogel. Scanning electron microscopy observation indicates that the composite hydrogel has a microporous surface. The volume ratio of heptane to water, weight ratio of acrylamide to N‐succinylchitosan and attapulgite content have great influence on swelling ability of the composite hydrogel. The composite hydrogel shows higher swelling rate and pH‐sensitivity compared to that of without attapulgite.

  相似文献   


6.
A novel superabsorbent composite, poly(acrylic acid‐co‐acrylamide)/potassium humate (PAA‐AM/KHA), was prepared by aqueous solution polymerization from acrylic acid, acrylamide, and potassium humate (KHA) with N,N′‐methylenebisacrylamide as a crosslinker and potassium peroxydisulfate as an initiator. The effects of incorporated KHA on the water absorbency, swelling rate, and reswelling capability were investigated. The swelling property of PAA‐AM/KHA in various saline solutions was studied systematically. The results show that the comprehensive properties and especially salt‐resistant ability of PAA‐AM/KHA were enhanced. There was a linear relationship between the saturated water absorbency and the minus square root of the ionic strength of the external medium, and the water absorbency of PAA‐AM/KHA in various salt solutions had the following order: NH4Cl(aq) = KCl(aq) = NaCl(aq) > MgCl2(aq) > CaCl2(aq) > AlCl3(aq) > FeCl3(aq). Moreover, the polymeric net structure of PAA‐AM/KHA was examined with respect to that of poly(acrylic acid‐co‐acrylamide). The results indicate that the polymeric net of PAA‐AM/KHA was improved by the introduction of a moderate amount of KHA into the superabsorbent composite and made more suitable for agriculture and horticulture applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Mixtures of acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AASO3H) were graft polymerized onto starch by cobalt-60 irradiation, and the water absorbency and water solubility of the resulting products were determined. The conversion of monomers to polymer was nearly quantitative when pregelatinized wheat starch and a water solution of the two monomers were simultaneously irradiated (simultaneous irradiation conditions). Products with high water absorbency were obtained with equal weights of starch and total monomers when acrylamide:AASO3H ratios ranged from 9:1 to 1:3. Water solubility of these polymers was over 50%. Neither of the two monomers gave absorbent polymers when graft polymerized individually onto starch. Although highly absorbent products were also obtained at a total monomer:starch ratio of 2:5, ratios of 1:5 and lower gave products with poor absorbency. Neutralization of AASO3H with sodium hydroxide before graft polymerization drastically reduced both the water solubility and absorbency of the final products. A reaction with granular starch was also carried out under simultaneous irradiation with a total monomer:starch ratio of 2:5 and with equal weights of the two monomers. Conversion of monomers to polymer was once again nearly quantitative. To obtain good water absorbency from this granular product, it was necessary to first neutralize the AASO3H portion with alkali, then disperse the polymer in hot water, and finally dry the resulting water dispersion. Graft copolymers with good water absorbency were also obtained by adding preirradiated starch to a water solution of acrylamide and AASO3H, although only partial conversions of monomers to polymer were realized. Selected products from the various graft polymerizations were fractionated by extraction with either water or a 1% solution of sodium chloride. The synthetic polymer content of the resulting fractions and the percentage of AASO3H in the synthetic portion of each polymer were determined. The M n of some of the synthetic polymers was also determined after removal of carbohydrate by enzymatic hydrolysis.  相似文献   

8.
A cross‐linked copolymer of acrylamide (AM) with 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) was prepared by solution polymerization. In this reaction, potassium persulfate (PPS) and N,N′‐methylenebisacrylamide (NMBA) were used as initiator and cross‐linker, respectively. This copolymer, poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMA), can absorb up to 1749 g/g of dry polymer in distilled water and 87 g/g of dry polymer in 0.9 wt % NaCl aqueous solution at room temperature. The PAMA also has excellent performance in absorbing pure alcohols. Its absorbencies in methanol and glycol are about 310 g/g and 660 g/g, respectively. The effects of various salt solutions on the swelling properties were studied systematically, and the relationship between the absorbency and the concentrations of the different salt solutions can be expressed as Q = kcn. Experimental results indicate that the absorbencies were stable at different water temperatures. The swelling rates of the copolymer in distilled water and a water/ethanol mixture (Vwater:Valcohol = 1:1) were also investigated, and the results showed that PAMA could absorb 992 g of distilled water per gram of dry polymer and 739 g of water/ethanol mixture per gram of dry polymer in five minutes. The PAMA has such good water retention at higher temperatures that the swollen gel can retain 71.6 and 49.5% of the maximum absorbency after being heated for 9 hours at 60 and 80 °C, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3481–3487, 2003  相似文献   

9.
A new cellulose‐based superabsorbent polymer, carboxymethyl cellulose‐graft‐poly(acrylic acid‐co‐acrylamide), was prepared by the free‐radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto carboxymethyl cellulose (CMC) in the presence of N,N′‐methylenebisacrylamide as a crosslinker with a redox couple of potassium persulfate and sodium metabisulfite as an initiator. The influences of reaction variables such as the initiator content, crosslinker content, bath temperature, molar ratio of AA to AM, and weight ratio of the monomers to CMC on the water absorbency of the carboxymethylcellulose‐graft‐poly(acrylic acid‐co‐acrylamide) copolymer were investigated. The copolymer's structures were characterized with Fourier transform infrared spectroscopy. The optimum reaction conditions were obtained as follows: the bath temperature was 50°C; the molar ratio of AA to AM was 3 : 1; the mass ratio of the monomers to CMC was 4 : 1; and the weight percentages of the crosslinker and initiator with respect to the monomers were 0.75 and 1%, respectively. The maximum water absorbency of the optimized product was 920 g/g for distilled water and 85 g/g for a 0.9 wt % aqueous NaCl solution. In addition, the superabsorbent possessed good water retention and salt resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1382–1388, 2007  相似文献   

10.
Summary: A novel fast‐swelling porous superabsorbent hydrogel was prepared by grafting acrylic acid onto corn starch through free‐radical polymerization in aqueous solution using N,N′‐methylenebisacrylamide as a crosslinker, ammonium persulfate as an initiator, sodium dodecyl sulfate and p‐octyl poly(ethylene glycol)phenyl ether as pore‐forming agents. The graft polymerization and surface morphology of the porous superabsorbents were characterized by FTIR and SEM. The results indicate that the porous superabsorbents were endowed with higher equilibrium water absorbency and faster swelling rate (they needed only 10 min to reach 90% of their equilibrium water absorbency) compared with the nonporous superabsorbents. The dewatering method employed had a significant influence on the swelling behavior of the superabsorbents and dewatering agents were useful to preserve the pores formed during the polymerization process.

The equilibrium water absorbency in distilled water, for the porous and non‐porous starch‐g‐poly(acrylic acid‐co‐sodium acrylate) superabsorbent hydrogels dried through different procedures.  相似文献   


11.
A series of superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and ion‐exchanged attapulgite (APT) was prepared by aqueous polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The effects of ion‐exchanged APT on water absorbency of superabsorbent composites in distilled water and in 0.9 wt% NaCl solution were studied. The result indicates that higher cation‐exchange capacity (CEC) and lower specific surface area (SSA) of APT treated with various anions are of benefit for improving water absorbency in distilled water. The effects of AlCl3 solution concentration and Al3+‐exchanged APT content on water absorbency of the composite were also investigated. The concentration of AlCl3 solution has a great influence on water absorbency of the superabsorbent composite. Al3+‐exchange of APT could also enhance reswelling ability of the corresponding composite, which indicates that Al3+‐exchange of APT could improve gel strength and gives a direct evidence for its acting as an inorganic assistant crosslinker in the polymeric network. POLYM. COMPOS., 28:208–213, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Starch and montmorrilonite (MMT) were used as raw materials for synthesizing starch‐graft‐poly[acrylamide (AM)–acrylic acid (AA)]/MMT superabsorbent nanocomposite by graft and intercalation copolymerization reaction of starch, AM, and AA in the presence of organic MMT micropowder in aqueous solution. Major factors affecting water absorbency such as weight ratio of monomers to starch, weight ratio of AM to AA, neutralization degree of AA, amount of crosslinker, initiator, and MMT were investigated. The superabsorbent nanocomposite synthesized under optimal synthesis conditions exhibits absorption of 1120 g H2O/g sample and 128 g H2O/g sample in deionized water and in 0.9 wt % NaCl solution, respectively. IR spectra showed that the graft copolymerization between  OH groups on MMT and monomers took place during the reaction, and that crystal interlayer was pulled open in the superabsorbent nanocomposite. X‐ray diffraction analysis showed that the crystal interlayer of MMT was pulled open to 2.73 nm, and thus formed nanometer exfoliation composite material. Thermogravimetric analysis showed that starch‐graft‐poly (AM–AA) superabsorbent nanocomposite (8 wt % MMT) has good thermal stability. This superabsorbent nanocomposite with excellent water absorbency and water retention, being biodegradable in nature, economical and environment friendly, could be especially useful in industry, agricultural, and horticultural applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A series of xerogels based on sodium acrylate (SA), cationic comonomer, trimethyl methacryloyloxyethyl ammonium iodide (TMMAI), and N,N‐methylene‐bis‐acrylamide (NMBA) were prepared by inverse suspension polymerization. The water absorbency and the swelling behavior for these high absorbent polymers in deionized water and various saline solutions were investigated. Results indicated that the water absorbency for the present copolymer gel increased when a small amount of TMMAI monomer was introduced into the SA gel, then decreased with increase in TMMAI content. The water absorbency was 583 g H2O/g for a gel sample in deionized water containing 2.5 × 10−3 molar fraction TMMAI. But a contrary result was observed for initial absorption rate, that is, the initial absorption rates increased with an increase of TMMAI in deionized water and 0.9 wt % NaCl solution. The absorbency in the chloride salt solution decreased with an increase in the ionic strength of the salt solution. Finally, the adsorption of copper ion by these gels was also investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1665–1674, 2001  相似文献   

14.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
An efficient method for the synthesis of three classes of heterocyclic derivatives such as 3,3‐disubstituted phthalides, 3‐hydroxyisoindolin‐1‐ones and 3‐hydroxyoxindoles, is reported. In the presence of the simple reductive system, zinc (Zn)/ammonia (NH3) [or zinc‐copper (Zn‐Cu)/ammonia], a wide range of alkenes including acrylates, acrylonitrile, acrylamide and vinyl sulfoxide underwent reductive coupling with methyl 2‐acylbenzoates and subsequent lactonization to provide 3,3‐disubstituted phthalides in good to high yields at ambient temperature. In a similar manner, 3‐hydroxyisoindolin‐1‐one and 3‐hydroxyoxindole derivatives could also be easily prepared by direct reductive coupling of phthalimides and N‐substituted isatins with activated alkenes, respectively. Application of this methodology towards the synthesis of 1‐naphthol derivatives on a gram scale is also depicted. Furthermore, the intramolecular phthalimides–ene reductive coupling afforded the respective cyclization products with high diastereoselectivity.

  相似文献   


16.
A novel superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and attapulgite (APT), was prepared by free‐radical polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The effects of hydrochloric acid (HCl) concentration, acidification time, and acidification temperature while acidifying APT and temperature and APT heat‐activation on water absorbency of the superabsorbent composite in distilled water and in 0.9 wt % NaCl solution were studied. The water absorbency first decreases with increasing the HCl concentration while acidifying APT, and then increases with further increasing the HCl concentration. Prolongation of acidification time is of benefit to the increase of water absorbency. At a given HCl concentration, water absorbency for the composite increases with increasing acidification temperature. An important increase in water absorbency was observed after incorporating heat‐activated APT into the polymeric network, reaching a maximum of 1964 g g?1 with the APT heat‐activated at 400°C. Acid‐ and heat‐activation can influence chemical composition, crystalline structure, cation exchange capacity (CEC), and specific surface area of APT according XRF, XRD, FTIR analysis, and physicochemical properties test, and then on water absorbency of corresponding PAM/APT superabsorbent composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2419–2424, 2007  相似文献   

17.
A series of novel multifunctional poly (acrylic acid‐co‐acrylamide) (PAA‐AM)/organomontmorillonite (O‐MMT)/sodium humate (SH) superabsorbent composites were synthesized by the graft copolymerization reaction of partially neutralized acrylic acid and acrylamide on O‐MMT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. The superabsorbent composites were characterized by means of Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The effect of the relative weight ratio of SH to O‐MMT on the water absorbency was studied, and the results indicated that the best water absorbency of 591 g/g in distilled water was obtained when an O‐MMT content of 20 wt % and an SH content of 30 wt % were incorporated. The superabsorbent composite possessed a good capacity for water retention; even after 30 days, 24.4 wt % of water could still be saved by the sand soil containing 1.0 wt % superabsorbent composite. The results from this study show that the water absorbency of a superabsorbent composite is improved by the simultaneous introduction of O‐MMT and SH into a PAA‐AM network in comparison with the incorporation of only O‐MMT or SH. Also, in comparison with PAA‐AM/MMT/SH, an appropriate amount of O‐MMT can benefit the developed composites with respect to their water absorbency, salt resistance, and capacity for water retention in sand soil. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
A novel poly(acrylic acid‐co‐acrylamide)/halloysite nanotubes [PAA‐AM/HNTs] superabsorbent composite was synthesized by free radical polymerization with using HNTs as an inorganic additive. The composite was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, and thermogravimetric analysis. The results revealed that HNTs and PAA‐AM were combined well together to form a porous structure with a pore size of about 10 μm, and HNTs were uniformly distributed in the composite. The thermal stability was improved by adding HNTs in the composite. The influences of contents of initiator and halloysite, neutralization degree of AA, and molar ratio of AM to AA on water absorbency were investigated. The water absorbency and the water retention capacity were improved after adding HNTs into PAA‐AM. The composite containing 10% HNTs had the highest water absorbency of 1276 g/g in distilled water. Moreover, PAA‐AM/HNTs composite also had a high swelling rate within 60 min and could maintain 78% initial swelling capability after five reswelled test. The substantial enhancement of swelling properties enables PAA‐AM/HNTs suitable for numerous practical applications. POLYM. COMPOS., 36:229–236, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
In an attempt to develop an environmentally friendly, multifunctional mud additive for oilfield drilling treatment, new water‐soluble grafted starches with amphoteric character were prepared by grafting the mixed monomer system of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and 2‐(dimethylamino)ethyl methacrylate (DMAEM) onto naturally occurring potato starch, and characterized by IR and composition analyses. Their structure‐property relationships with respect to the hydration suppression of the swellable clay and the control of mud rheology were studied with the help of clay hydration‐swelling test, mud rheology test, and SEM observation. It has been found that the grafting of DMAEM enhances the inhibition effectiveness of clay hydration‐swelling and that the grafting of AMPS increases the viscosity of the treated muds and the tolerance to added salt. Compared with the partially hydrolyzed polyacrylamide with a degree of hydrolysis of 16%, a typical polymeric additive used in current drilling fluids, such grafted starch with suitable grafting percentage and composition has some distinct advantages in the formulation of water‐based drilling muds.

Swelling percentage (Sp) of the clay pellets as a function of hydration time (t) in water and various sample solutions.  相似文献   


20.
We report the synthesis of metallocene compounds Cp2M with two different electron‐withdrawing substituents on both cyclopentadienyl rings (hexafluoroacetone (HFA) and chlorobenzoyl ( 1 – 5 ); HFA and COOH ( 6 and 7 ), M=Fe or Ru). The COOH‐containing derivatives were used to synthesize peptide bioconjugates with enkephalin ( 8 and 9 ) and neurotensin ( 10 and 11 ) as well as fluorescein‐labeled neurotensin ( 12 ). All the molecules were fully characterized, including X‐ray structures for 6 and 7 . The physicochemical properties (lipophilicity and electrochemistry) and cytotoxicity on MCF‐7, HT‐29, and PT‐45 cancer cells were evaluated for selected compounds. Electrochemical investigation by cyclic voltammetry revealed that all bis‐substituted metallocenes are up to 300 mV harder to oxidize compared to the monosubstituted 2‐ferrocenylhexafluoropropan‐2‐ol (FcHFA: Δ${E{{{\rm f}\hfill \atop 0\hfill}}}$ =214 mV; disubstituted derivatives: up to Δ${E{{{\rm f}\hfill \atop 0\hfill}}}$ =512 mV; both vs. FcH0/+). For the bis‐substituted compounds, log P determinations by RP‐HPLC showed increased lipophilicity in comparison to the monosubstituted FcHFA and RcHFA. Cellular uptake was investigated by fluorescence microcopy, and this revealed endosomal entrapment for 12 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号