首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R a) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Δ a, correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.  相似文献   

2.
In the present investigation, tests were conducted on a tribological couple made of cylindrical lead pin with spherical tip against 080 M40 steel plates of different textures with varying roughness under both dry and lubricated conditions using an inclined pin-on-plate sliding tester. Surface roughness parameters of the steel plates were measured using optical profilometer. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the surface texture of hard surfaces. A newly formulated non-dimensional hybrid roughness parameter called ‘ξ’ (a product of number of peaks and maximum profile peak height) of the tool surface plays an important role in determining the frictional behaviour of the surfaces studied. The effect of surfaces texture on coefficient of friction was attributed to the variation of plowing component of friction, which in turn depends on the roughness parameter ‘ξ’.  相似文献   

3.
In the present investigation, experiments were conducted on a tribological couple—copper pin against steel plate—using an inclined pin-on-plate sliding tester to understand the role of surface texture and roughness parameters of the plate on the coefficient friction and transfer layer formation. Two surface characteristics of the steel plates—roughness and texture–were varied in the tests. It was observed that the transfer layer formation and the coefficient of friction along with its two components, namely, the adhesion and plowing, are controlled by the surface texture of the plate. The plowing component of friction was highest for the surface texture that promotes plane strain conditions while it was lowest for the texture that favors plane stress conditions at the interface. Dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing and hence the plane strain/stress type deformations taking place at the asperity level.  相似文献   

4.
Studies on friction and transfer layer using inclined scratch   总被引:5,自引:0,他引:5  
Friction influences the nature of transfer layer formed at the interface between die and sheet during forming. In the present investigation, basic studies were conducted using ‘Inclined Scratch Test’ to understand the mechanism of transfer layer formation during sliding of pins made of an Al–Mg alloy on EN8 steel flats of different surface roughness under dry and lubricated conditions. The surfaces produced can be categorized into three different types: (a) uni-directional (b) 8-ground and (c) random. Rubbing the EN8 flat in a uni-directional manner and a criss-cross manner on emery sheets produced the uni-directional and 8 ground surfaces. The random surfaces were produced by polishing the EN8 flats using various abrasive powders. The influence of the ‘nature of surface roughness’ on material transfer and coefficient of friction were investigated. Scanning Electron Microscopy studies were performed on the contact surfaces of the Al–Mg alloy pins and EN8 steel flats to reveal the morphology of the transfer layer obtained. It was seen that the transfer layer is dependant on the coefficient of friction. The coefficient of friction, which has two components—the adhesion component and the plowing component, is controlled by the ‘nature of surface’. A surface that promotes plane strain conditions near the surfaces increases the plowing component of friction.  相似文献   

5.
Studies on friction and transfer layer: role of surface texture   总被引:2,自引:0,他引:2  
Friction influences the nature of transfer layer formed at the interface between tool and metal during sliding. In the present investigation, experiments were conducted using “Inclined Scratch Tester” to understand the effect of surface texture of hard surfaces on coefficient of friction and transfer layer formation. EN8 steel flats were ground to attain surfaces of different textures with different roughness. Then super purity aluminium pins were scratched against the prepared steel flats. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the morphology of transfer layer. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the texture of hard surfaces, but independent of surface roughness of hard surfaces. It was observed that on surfaces that promote plane strain conditions near the surface, the transfer of material takes place due to the plowing action of the asperities. But, on a surface that promotes plane stress conditions the transfer layer was more due to the adhesion component of friction. It was observed that the adhesion component increases for surfaces that have random texture but was constant for the other surfaces.  相似文献   

6.
Surface texture influences friction and transfer layer formation during sliding contact. In the present investigation, basic studies were conducted using an inclined pin-on-plate sliding apparatus to understand the effect of grinding mark directionality on the coefficient of friction and transfer layer formation. In the experiments, 080 M40 steel plates were ground to attain different surface roughness with unidirectional grinding marks. Pins consisting of soft materials (pure Al, pure Mg, and Al–4Mg alloy) were then slid against the prepared steel plates. The grinding angle (angle between direction of sliding and grinding marks) was varied between 0° and 90° in the tests. The experiments were conducted under both dry and lubricated conditions in an ambient environment. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the directionality of the plate grinding marks. For the case of pure Mg pins, a stick-slip friction phenomenon was observed for all grinding angles under dry conditions and for grinding angles over 25° under lubricated conditions. In the case of Al pins, the stick-slip phenomenon was observed only under lubricated conditions for angles exceeding 25°. The stick-slip phenomena did not occur in any of the conditions studied with Al–4Mg alloy pins. Based on the results, it was concluded that the magnitudes of the friction and the stick-slip motion amplitude (for Al and Mg pins) were primarily controlled by changes in the level of plowing friction.  相似文献   

7.
Abstract

Improving shoe–floor friction in order to reduce slip and fall accidents requires thorough understanding of the factors that contribute to friction. The friction between a sliding viscoelastic material (shoe) and a hard surface (floor) has two major components: adhesion and hysteresis. This study aimed to quantify the effects of floor roughness and sliding speed on adhesion and hysteresis to determine how each component contributes to the coefficient of friction. Experiments were conducted on a pin on disc tribometer using ceramic tiles with three levels of roughness, six sliding speeds, two common shoe materials and four liquid lubricants. Hysteresis was measured using a lubricant that minimised adhesion. Dry and lubricated adhesion was measured by subtracting hysteresis from the coefficient of friction. Analysis of variance regression models were used to determine the contributions of hysteresis, dry adhesion, sliding speed and fluid to lubricated coefficient of friction. Increased floor roughness led to increased hysteresis, while increased sliding speed reduced both adhesion and hysteresis. These findings are consistent with theory that states that larger asperities increase hysteretic deformation and that sliding speed affects deformation and real area of contact between a viscoelastic material and a hard surface. The model correctly predicted 83% of variation in coefficient of friction based on dry adhesion, hysteresis and fluid dependent constants. The sensitivity of hysteresis friction to shoe material and floor roughness indicates that optimising these parameters may be effective at reducing slip accidents on oily floor surfaces.  相似文献   

8.
The static and dynamic friction of dissimilar pairs of plastics used in automotive interiors was measured as a function of normal load, system stiffness, and surface roughness. Glass fiber filled polypropylene (FPP) was slid on polycarbonate (PC) and glass fiber filled styrene–maleic–anhydride copolymer (SMAC) in a single pass, unidirectional sliding test. The friction was characterized by the value of static coefficient of friction (COF) and the number of stick–slip cycles during sliding. It was found that the FPP/PC and FPP/SMAC pairs had fewer instances of stick slip than FPP/FPP, PC/PC, and SMAC/SMAC pairs except for one of the SMAC polymers. The surface texture which had the smallest average radius of peak curvature, had the lowest value of static COF. The decrease in the static COF of polypropylene (PP) caused by the addition of glass fiber was most likely caused by the increase in elastic modulus and hardness.  相似文献   

9.
Mann  David J.  Hase  William L. 《Tribology Letters》1999,7(2-3):153-159
A molecular dynamics simulation is performed to investigate the frictional force and energy transfer dynamics associated with sliding hydroxylated alumina surfaces. The calculated coefficient of friction is in good agreement with a recent experimental study. The dynamics of energy transfer from the interface of the sliding surface is investigated by calculating the surface–surface intermolecular potential and the energy in surface hydroxyl groups. The simulations indicate the experimental friction force arises from energy relaxation. A transition from stick–slip to smooth sliding is observed as the sliding velocity is increased. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
Ulf Olofsson 《Wear》1993,170(2):235-245
This report describes friction measurements of stainless steel against stainless steel during lubricated, small-amplitude reciprocating motion. The experimental investigation was divided into two parts. First, four different lubricants were evaluated using a response surface design, during which the average contact pressure and the sliding velocity were varied. Secondly, a 24 factorial design with three replicate runs was performed. Here, the coefficient of friction in the initial stage and the duration of that stage were studied. The independent variables were the average contact pressure, sliding velocity, surface roughness and type of lubricant. In the early state (stage I), the value of the frictional force is controlled by plowing of the surfaces by asperities. In many lubricated contacts, this is the practically useful stage. The experimental results from the response surface design show that the duration of stage I depends on the type of lubricant. Adhesive wear can take place before 100 cycles. The factorial design indicates that the coefficient of friction in the initial stage is affected by the type of lubricant, surface roughness and the simultaneous change of the surface roughness and type of lubricant. The duration of the initial stage is affected by a change in the surface roughness, average contact pressure and a simultaneous change in average contact pressure and surface roughness. A two-parameter Weibull analysis was performed on the data from the factorial design. For the tests where lubricant no. 3 was used, a mixed distribution was indicated for the duration of stage I. This mixed distribution indicates that a weakest-link process as well as a healing process were involved.  相似文献   

11.
The friction behaviour of gear teeth in the context of tribology can have a strong effect on housing vibration, noise and efficiency. One of the parameters that greatly influences the friction under certain running conditions is surface roughness. In this work, rough friction was studied in lubricated sliding of roller surfaces, which were manufactured to simulate the real gear surfaces. By examining 3D surface topography of two mating bodies, both surface roughness and its effect on friction behaviour can be studied. In a previous study, a rough-friction test rig has been designed, constructed and initially verified. The types of surfaces involved in this study are ground, shot-peened, phosphated and electrochemically deburred. These rollers were subjected to the same friction testing procedures. Roller surfaces were then examined, and correlation between the topography and the frictional behaviour was analysed. Friction behaviour was interpreted in terms of Stribeck curves (friction coefficient as the function of Hersey parameter (ην/p)). The results showed that electrochemically deburred and certain phosphated surfaces provide lower friction coefficient values which are competitive to fine-ground surfaces in lubricated rolling/sliding contact.  相似文献   

12.
A newly developed tribometer that undergoes significant changes in sliding speed, ranging from ultralow (5 μm/s) to moderate (17 cm/s), was used to study the lubricated friction characteristic of steel. In this study, the friction characteristics of stearic acid-formulated oil were studied to clarify the effects of surface roughness or surface roughness texture on friction. Several kinds of specimens having isotropic and anisotropic surface roughness with different textures were used. For an isotropic surface, a rougher surface resulted in low friction under low-speed conditions. The same surface produced high friction under high-speed conditions, where macroscopic hydrodynamic action was predominant. Remarkably less friction was observed in the transverse than in the longitudinal direction when the specimen had anisotropic roughness. This difference was particularly notable under ultra-low-speed conditions. Two other parameters of skewness and kurtosis of roughness distributions show that low friction was obtained when surface roughness distribution approached normal. It appears that the low friction observed with a rough surface or a transverse roughness direction could be explained by the microscopic hydrodynamic action of fluid together with the lubricity of the adsorbed molecular layer.  相似文献   

13.
A finite element model is used to simulate sliding inception of a rigid flat on a deformable sphere under combined normal and tangential loading. Sliding inception is treated as the loss of tangential contact stiffness under combined effects of plasticity, crack propagation and interfacial slip. Energy dissipation distribution is used to quantify the relative contribution of these mechanisms on the increased compliance during tangential loading. Materials with different strength and toughness properties, and varying local interface conditions ranging from fully adhered to finite friction, are studied to relate variations in plastic deformations, crack and slip to the sliding inception. For fully adhered contact condition, crack and fracture toughness have no effect on sliding inception, with plasticity, the dominant failure mechanism. A measure of recoverable strain (yield strength to Young’s modulus ratio) is found to be the most influential parameter in sliding inception. Interfacial slip is expectedly the dominant mechanism for sliding inception for lower coefficient of friction, modeling lubricated contacts. Interplay of plasticity and interfacial slip is found to govern the onset of sliding for higher local friction coefficients. Furthermore, the single asperity results are incorporated in a statistical model for nominally flat contacting rough surfaces under combined normal and tangential loading to investigate the stochastic effects due to surface roughness and material property uncertainties. The results show that the static coefficient of friction strongly depends on the normal load, material properties, local interfacial strength and roughness parameters.  相似文献   

14.

The surface of steel sheets used in the metal-forming process discussed in this article was textured by a laser-ablation technique. Differently shaped craters are formed in a patterned structure on the steel surface by controlling the pulsed-laser power density, pulse-repetition rate, and pulse duration. Lasertex sheets formed by this process have unique friction characteristics because of the uniform surface roughness and valley-biased topography. The friction of lasertex sheets was studied using a metal-forming bench test rig. Influencing factors, including surface roughness and sliding velocity, were studied under lubricated conditions. The friction of lasertex sheets was compared with that of shot-blasted sheets. The results showed that the coefficient of friction of the lasertex sheet under dry friction decreases with an increase in surface roughness and changes little with varying sliding velocity. With lubrication, the coefficient of friction of the lasertex sheet rises with an increase in surface roughness and decreases with an increase in sliding velocity. Lasertex sheets were found to have lower friction coefficients than shot-blasted sheets over the rage of surface roughness and sliding velocity investigated.  相似文献   

15.
The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against GCr15 steel and electroless Ni-P alloy coating under the lubrication of seawater was investigated and compared with that under dry sliding and lubrication of pure water and 3.5 wt.% NaCl solution, respectively. It was found that under the lubrication of aqueous medium, the friction and wear behavior of UHMWPE mainly depended on the corrosion of counterface and the lubricating effect of the medium. Because of serious corrosion of counterface by the medium, the wear rates of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution were much larger than that under other conditions, and such a kind of wear closely related to the corrosion of counterface can be reckoned as indirect corrosive wear. However, when sliding against corrosion-resistant Ni–P alloy under the lubrication of seawater, the lowest coefficient of friction and wear rate of UHMWPE were obtained, owing to superior lubricating effect of seawater. Moreover, periodic ripple patterns were observed on the worn surfaces of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution, which were ascribed to the intelligent reconstruction of surface microstructure of UHMWPE upon large plowing effect of the counterface asperities. Based on scanning electron microscopic (SEM) and three-dimensional (3D) profile analyses of the worn surfaces of UHMWPE, a stick–slip dynamic mechanism was proposed to illustrate the pattern abrasion of UHMWPE. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
In the present investigation, unidirectional grinding marks were attained on the steel plates. Then aluminium (Al) pins were slid at 0.2°, 0.6°, 1.0°, 1.4°, 1.8°, 2.2° and 2.6° tilt angles of the plate with the grinding marks perpendicular and parallel to the sliding direction under both dry and lubricated conditions using a pin-on-plate inclined sliding tester to understand the influence of tilt angle and grinding marks direction of the plate on coefficient of friction and transfer layer formation. It was observed that the transfer layer formation and the coefficient of friction depend primarily on the grinding marks direction of the harder mating surface. Stick-slip phenomenon was observed only under lubricated conditions. For the case of pins slid perpendicular to the unidirectional grinding marks stick-slip phenomenon was observed for tilt angles exceeding 0.6°, the amplitude of which increases with increasing tilt angles. However, for the case of the pins slid parallel to the unidirectional grinding marks the stick-slip phenomena was observed for angles exceeding 2.2°, the amplitude of which also increases with increasing tilt angle. The presence of stick-slip phenomena under lubricated conditions could be attributed to the molecular deformation of the lubricant component confined between asperities.  相似文献   

17.
J. Perry  T.S. Eyre 《Wear》1977,43(2):185-197
The friction and wear resistance of two commercial manganese phosphate coatings have been evaluated. Grey cast iron wear pins were treated by the two processes and were tested by sliding against a steel disc, under both lubricated and dry sliding wear conditions.Phosphating increases the sliding distance to scuffing as well as the scuffing load, whilst marginally reducing the coefficient of friction. No advantage was found in phosphating dry sliding surfaces.Phosphating reduces the likelihood of adhesive wear in marginal or poorly lubricated sliding couples. The choice of phosphate coating is primarily dependent on the surface finish of the sliding counterface; thin coatings are suitable if the counterface is smooth but thicker coatings are superior against rougher surfaces.  相似文献   

18.
Three kinds of metal-plastic multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene (PTFE) filled by Pb or Cu2O powders, were prepared. The friction and wear properties as well as the limiting pressure times velocity (PV) values of these metal-plastic multilayer composites sliding against 45 carbon steel under both dry and oil lubricated conditions were evaluated on a MPV-1500 friction tester with a steel axis rotating on a journal bearing. The worn surfaces of these metal-plastic multilayer composites and the transfer films formed on the surface of steel axis were examined by electron probe microscopy analysis (EPMA). Experimental results show that filling of Pb to PTFE reduces the friction coefficient and wear of the composite, while filling of Cu2O to PTFE increases the friction coefficient but decreases the wear of the composite. The friction and wear properties as well as the limiting PV values of these metal-plastic multilayer composites can be greatly improved with the oil lubrication. EPMA investigations show that Pb and Cu2O fillers preferentially transfer onto the surfaces of steel axis, which may enhance or deteriorate the adhesion between transfer films and steel surfaces. Meanwhile the transfer of these metal-plastic multilayer composites onto the steel surface can be greatly reduced with oil lubrication, which results in the remarkable decrease of the wear of these metal-plastic multilayer composites.  相似文献   

19.
The molecular-level function of model and commercial friction modifier additives in lubricants of the type used at the wet clutch interface in automatic transmissions has been studied using a surface forces apparatus (SFA) modified for oscillatory shear. The nanorheological properties of tetradecane with and without a model friction modifier additive (1-hexadecylamine) were examined in the boundary lubrication regime and compared to a fully-formulated automatic transmission fluid (ATF). 1-Hexadecylamine adsorbed as a single layer on the sliding surfaces, reduced the static frictional force and the limiting shear stress, and eliminated the stick–slip transition that exists in pure tetradecane. The ATF, which contains commercial-grade friction modifiers, showed nanorheological properties similar to those observed for tetradecane containing 0.1–0.2 wt% 1-hexadecylamine.  相似文献   

20.
A study was made of surface roughness effects on metallic contact and friction in the transition zone between hydrodynamic and boundary lubrication. The system used was one of pure sliding and relatively high contact stress, namely a fixed steel ball riding on a rotating steel cylinder.

It was found that very smooth and very rough surfaces gave less metallic contact than surfaces of intermediate roughness; very smooth surfaces also gave less friction.

Four different types of antiwear/antifriction additives (including tricresyl phosphate) were studied and although they were found to reduce metallic contact and friction, they had little effect in reducing surface roughness. Rather, the additives merely slowed down the wearing-in process of the base oil. Thus, the “chemical polishing” mechanism advanced for the antiwear behavior of tricresyl phosphate appears to be incorrect.

With rough surfaces, the improvement in load-carrying capacity with increasing viscosity was less than that shown previously with smooth surfaces. Also, oils with a large pressure-viscosity coefficient did not show the expected beneficial effect with rougher surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号