首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To identify the binding domain for diltiazem-like Ca2+ antagonists on L-type Ca2+ channel alpha1 subunits we synthesized the benzazepine [3H]benziazem as a novel photoaffinity probe. [3H]Benziazem reversibly labeled the benzothiazepine (BTZ)-binding domain of partially purified skeletal muscle Ca2+ channels with high affinity (Kd = 12 nM) and photoincorporated into its binding domain with high yield (>66%). Antibody mapping of proteolytic labeled fragments revealed specific labeling of regions associated with transmembrane segments S6 in repeats III and IV. More than 50% of the labeling was found in the tryptic fragment alanine 1023-lysine 1077 containing IIIS6 together with extracellular and intracellular amino acid residues. The remaining labeling was identified in a second site comprising segment S6 in repeat IV and adjacent residues. Unlike for dihydropyridines, no labeling was observed in the connecting IIIS5-IIIS6 linker. The [3H]benziazem photolabeled regions must be in close contact to the drug molecule when bound to the channel. We propose that the determinants for high affinity BTZ binding are located within or in close proximity to segments IIIS6 and/or IVS6. Therefore the binding domain for BTZs, like for the other main classes of Ca2+ antagonists, must be located in close proximity to pore-forming regions of the channel.  相似文献   

2.
Characterization of the cyanogen bromide (CNBr) fragments of the beta chain of human haptoglobin revealed five major fragments resulting from cleavage of four methionyl residues. The fragments were isolated by gel filtration in guanidine-HCl on Sepharose 6B and Bio-Gel P10 and P60. Compositional analyses of the five cyanogen bromide fragments accounted for 248-253 amino acid residues in agreement with the number of residues determined for the intact beta chain. Most of the carbohydrate was attached to CNBr II. Automated amino-terminal sequence analysis and carboxyl-terminal hydrolysis with carboxypeptidase of the haptoglobin beta chain and cyanogen bromide fragments identified 139 residues, or about 55% of the beta-chain molecule. The placement of the fragments within the beta-chain molecule was established by sequence analysis of whole beta chain and a plasmin cleavage fragment. The position of CNBr V was confirmed by the absence of homoserine or homoserine lactone. Cyanogen bromide reaction of intact haptoglobin 1-1 resulted in the isolation of a beta-chain fragment, CNBr III, covalently attached to the intact alpha1 chain by a single disulfide bond. The beta chain was shown to have primary structural similarities to the chymotrypsin family of serin eproteases. Partial sequence analysis of CNBr V established the region which is comparable to the serine-195 active-site region: /Asp-Thr-Cys-Tyr-Gly-Asp-Ala-Gly-Ser-Ala-Phe/ (residues 189-199, chymotrypsinogen A numbering). The active-site serine-195 is replaced by alanine; however, the specificity residue of the trypsin-like enzymes, Asp-189, is preserved. Several minor cyanogen bromide cleavage products were also identified in yields of up to 15%. These minor cleavage products give evidence that tryptophanyl residues in proteins, or glycoproteins, are also susceptible to cyanogen bromide cleavage.  相似文献   

3.
Presynaptic N-type calcium channels interact with syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) through a binding site in the intracellular loop connecting domains II and III of the alpha1 subunit. This binding region was loaded into embryonic spinal neurons of Xenopus by early blastomere injection. After culturing, synaptic transmission of peptide-loaded and control cells was compared by measuring postsynaptic responses under different external Ca2+ concentrations. The relative transmitter release of injected neurons was reduced by approximately 25% at physiological Ca2+ concentration, whereas injection of the corresponding region of the L-type Ca2+ channel had virtually no effect. When applied to a theoretical model, these results imply that 70% of the formerly linked vesicles have been uncoupled after action of the peptide. Our data suggest that severing the physical interaction between presynaptic calcium channels and synaptic proteins will not prevent synaptic transmission at this synapse but will make it less efficient by shifting its Ca2+ dependence to higher values.  相似文献   

4.
Phosphopeptides that were derived from alpha s-CN or beta-CN were prepared with immobilized glutamic acid-specific endopeptidase, and their Ca2+ binding was characterized. alpha s-Casein or beta-CN was hydrolyzed in a fluidized bed bioreactor containing 2 ml of immobilized glutamic acid-specific endopeptidase by recirculating 20 ml of alpha s-CN or beta-CN solution (10 mg/ml in 50 mM Tris.HCl and 0.02% NaN3, pH 8.0) for 3 h at 20 degrees C. The molecular masses of casein peptides were monitored by SDS-PAGE. Each hydrolysate was applied to an anion-exchange column using stepwise elution with various concentrations of KCl to separate peptides. The casein phosphopeptide content of the elution profile was monitored by analysis of protein and P concentrations. Calcium binding in phosphopeptide-enriched fractions was determined by CaCl2 titration and measurement of free Ca2+ with a Ca-selective electrode. The electrophoresis patterns showed four major peptides having molecular masses of 10.8, 9.0, 6.6, and 3.6 kDa in the alpha s-CN hydrolysate and 9.3, 8.2, and 6.2 kDa in the beta-CN hydrolysate. The highest concentrations of P were detected in the fractions that eluted with 0.4 and 0.5 M KCl for the alpha s-CN hydrolysate and with 0.4 M KCl for the beta-CN hydrolysate. The calcium-binding ability was found only in the fraction that was eluted with 0.4 M KCl; the maximum Ca2+ binding and the apparent binding constant were 0.24 mmol/mg of protein and 75 M-1, and 0.14 mmol/mg of protein and 148 M-1, respectively. alpha s-Casein phosphopeptides had different patterns for Ca2+ binding than did beta-CN phosphopeptides as the total Ca concentration was increased. Calcium binding to these casein phosphopeptides differed from that previously characterized for the tryptic peptides.  相似文献   

5.
Treatment of rabbit sarcoplasmic reticulum Ca2+-ATPase with a variety of proteases, including elastase, proteinase K, and endoproteinases Asp-N and Glu-C, results in accumulation of soluble fragments starting close to the ATPase phosphorylation site Asp351 and ending in the Lys605-Arg615 region, well before the conserved sequences generally described as constituting the "hinge" region of this P-type ATPase (residues 670-760). These fragments, designated as p29/30, presumably originate from a relatively compact domain of the cytoplasmic head of the ATPase. They retain two structural characteristics of intact Ca2+-ATPase as follows: high sensitivity of peptidic bond Arg505-Ala506 to trypsin cleavage, and high reactivity of lysine residue Lys515 toward the fluorescent label fluorescein 5'-isothiocyanate. Regarding functional properties, these fragments retain the ability to bind nucleotides, although with reduced affinity compared with intact Ca2+-ATPase. The fragments also bind Nd3+ ions, leaving open the possibility that these fragments could contain the metal-binding site(s) responsible for the inhibitory effect of lanthanide ions on ATPase activity. The p29/30 soluble domain, like similar proteolytic fragments that can be obtained from other P-type ATPases, may be useful for obtaining three-dimensional structural information on the cytosolic portion of these ATPases, with or without bound nucleotides. From our findings we infer that a real hinge region with conformational flexibility is located at the C-terminal boundary of p29/30 (rather than in the conserved region of residues 670-760); we also propose that the ATP-binding cleft is mainly located within the p29/30 domain, with the phosphorylation site strategically located at the N-terminal border of this domain.  相似文献   

6.
We have used o-phthalaldehyde (OPA) to cross-link adjacent fragments of "19 kDa membranes", a tryptic preparation of Na,K-ATPase lacking the ATP site but retaining cation occlusion sites. Treatment with OPA of "19 kDa membranes" or detergent-solubilized membranes containing occluded Rb ions [Or, E., Goldshleger, R., Tal, D. M., and Karlish, S. J. D. (1996) Biochemistry 35, 6853-6864] yielded cross-linked products of 25 and 31 kDa. Both species contained the 19 kDa fragment of the alpha subunit (transmembrane segments M7-M10). In addition, the 25 kDa product contained the fragment including M5-M6, while the 31 kDa product contained a 16 kDa fragment of the beta subunit. Cross-linking was unaffected by the absence or presence of ligands (Na, Rb, or Mg and ouabain). Cross-linking was largely abolished in thermally inactivated "19 kDa membranes". When proteolytic digestion of the 25 and 31 kDa products was combined with antibody binding, PKA-dependent phosphorylation, and sequencing of fragments, approximate positions of the cross-links were established. In the 25 kDa product, the cross-link was located within the short cytoplasmic segment Asn831-Arg841 of the 19 kDa fragment preceding M7 and within Ala749-Ala770 preceding M5. Thus, M7 and M5 are likely to be in close proximity. In the 31 kDa product, the cross-link was located in the extracellular loop of the alpha subunit between M7 and M8, close to residues which are known to interact with the beta subunit. Functional implications of the interactions between the fragments of the alpha (M5-M6 and M7-M10) and beta subunits are discussed.  相似文献   

7.
We investigated the nature and structural requirements for Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channel. Investigation of subunit requirements indicates that the interaction of alpha 1 subunit with ancillary subunits, especially beta subunit, is important for this property. Replacement of the putative cytoplasmic regions of the cardiac alpha 1 subunit with skeletal muscle counterparts eliminates Ca(2+)-dependent inactivation, indicating that the site regulated by Ca2+ resides in the cytoplasmic region of the alpha 1 subunit. Deletion of the carboxy-terminal region of the cardiac alpha 1 subunit does not eliminate this property, suggesting that the modulation by protein kinase A may not be involved in this mechanism. Single amino acid substitution that strongly reduces Ca2+ selectivity of Ca2+ channels also eliminates Ca(2+)-dependent inactivation, suggesting the close link between the ion selectivity and Ca(2+)-dependent inactivation.  相似文献   

8.
Photoaffinity labeling by 3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP) of the adenine nucleotide binding site(s) on isolated and complexed alpha and beta subunits of F1-ATPase from the thermophilic bacterium PS3 (TF1) is described. BzATP binds to both isolated alpha and beta subunits, to complexed beta subunit but not to complexed alpha subunit. Amino acid sequence determination of radiolabeled peptides obtained by proteolytic digestion of [gamma-32P]BzATP-labeled alpha subunit indicates that residues on both the amino-terminal (residues A41-E67) and carboxy-terminal (residues Q422-Q476) were modified by BzATP. One of the residues in the carboxy-terminal modified by BzATP is most probably alpha Q422. Although the binding stoichiometry of 1 mol of BzATP incorporated by either isolated or complexed beta subunit was maintained, the spatial conformation of the polypeptide determines which amino acid residue(s) is more accessible to the reactive radical. CNBr derived fragments beta G10-M64, beta E75-M233, and beta D390-M469 were labeled with the isolated beta subunit. With complexed beta subunit the label was found only in CNBr fragments: beta E75-M233 and beta G339-M389. The locations where the covalently bound BzATP was found, in the soluble and assembled subunits, indicate that different conformational states exist. In the isolated form of the alpha and beta subunits the amino- and carboxy-termini can fold and reach the central domain of the polypeptide, the domain containing the adenine nucleotide binding site. When alpha combines with beta to form the alpha 3 beta 3 core complex the new conformation of the subunits is such that covalent labeling by BzATP of alpha and of the amino terminal of beta subunit is excluded.  相似文献   

9.
This study characterizes disulfide cross-links between fragments of a well defined tryptic preparation of Na,K-ATPase, 19-kDa membranes solubilized with C12E10 in conditions preserving an intact complex of fragments and Rb occlusion (Or, E., Goldshleger, R., Tal, D. M., and Karlish, S. J. D. (1996) Biochemistry 35, 6853-6864). Upon solubilization, cross-links form spontaneously between the beta subunit, 19- and 11.7-kDa fragments of the alpha subunit, containing trans-membrane segments M7-M10 and M1/M2, respectively. Treatment with Cu2+-phenanthroline (CuP) improves efficiency of cross-linking. Sequencing and immunoblot analysis have shown that the cross-linked products consist of a mixture of beta-19 kDa dimers ( approximately 65%) and beta-19 kDa-11.7 kDa trimers ( approximately 35%). The alpha-beta cross-link has been located within the 19-kDa fragment to a 6.5-kDa chymotryptic fragment containing M8, indicating that betaCys44 is cross-linked to either Cys911 or Cys930. In addition, an internal cross-link between M9 and M10, Cys964-Cys983, has been found by sequencing tryptic fragments of the cross-linked product. The M1/M2-M7/M10 cross-link has not been identified directly. However, we propose that Cys983 in M10 is cross-linked either to Cys104 in M1 or internally to Cys964 in M9. Based on this study, cross-linking induced by o-phthalaldehyde (Or, E., Goldshleger, R., and Karlish, S. J. D. (1998) Biochemistry 37, 8197-8207), and information from the literature, we propose an approximate spatial organization of trans-membrane segments of the alpha and beta subunits.  相似文献   

10.
The partial amino acid sequences of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24 have been determined by analysis of peptides after cleavages with endopeptidase Lys-C, endopeptidase Glu-C, trypsin, and chemicals (cyanogen bromide and BNPS-skatole). They include 248 amino acid sequences (4 fragments) of CD I1 and 211 amino acid sequences (5 fragments) of CD I2. Two enzymes have more than 50% sequence homology with type I catechol 1,2-dioxygenases and less than 30% sequence homology with type II catechol 1,2-dioxygenases. Two enzymes have similar hydropathy profiles in the N-terminal region, suggesting that they have similar secondary structures.  相似文献   

11.
We have quantified the binding of Ca2+ to platelet thrombospondin 1 (TSP1) using equilibrium dialysis with 45CaCl2. Ca2+ binding to TSP1 was found to be cooperative with 10% occupancy at 15-20 microM CaCl2, 90% occupancy at 100 microM CaCl2, and a Hill coefficient of 2.4 +/- 0.2 The average apparent Kd was 52 +/- 5 microM. Maximum binding, assuming Mr = 450,000 and epsilon = 0.918 (A280/mg/ml), was 35 +/- 3 Ca2+/TSP1. This value is close to the 33 sites (11 per subunit) predicted based on homology of the epidermal growth factor (1 site) and aspartate-rich (10 sites) regions to known Ca2+ binding sequences. Ca2+ protected the aspartate-rich region from trypsin proteolysis, but not until nearly all of the Ca2+ binding sites were filled. At lower occupancy of Ca2+ binding sites, several limited tryptic digest products were obtained. This finding and the previous demonstration of extensive thiol-disulfide isomerization within the aspartate-rich regions suggest that subregions of the aspartate-rich region are stabilized in different conformers. Zn2+, Cu2+, Mn2+, Mg2+, Co2+, Cd2+, and Ba2+ were tested for their ability to modulate Ca2+ binding and protease sensitivity of TSP1. Zn2+ inhibited 40% of the Ca2+ binding but neither protected TSP1 from trypsin proteolysis, nor labilized TSP1 toward trypsin proteolysis. These results provide direct evidence for high capacity, cooperative and specific binding of Ca2+ to conformationally labile aspartate-rich repeats of TSP1.  相似文献   

12.
The principal (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive (L-type) calcium channels is present in full-length (212 kDa) and COOH-terminal truncated (190 kDa) forms, which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. Immunoprecipitation of the calcium channel from rabbit muscle myotubes in primary cell culture followed by phosphorylation with cA-PK, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed comparable phosphorylation of three COOH-terminal phosphopeptides found in the purified full-length alpha 1 subunit. Stimulation of muscle myotubes with a permeant cAMP analogue, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate, prior to immunoprecipitation of alpha 1 results in a 60-80% reduction of cA-PK catalyzed "back" phosphorylation of each of these sites in vitro in calcium channels purified from the cells, indicating that these sites are phosphorylated in vivo in response to increased intracellular cAMP. Serine 687, the most rapidly phosphorylated site in the truncated 190-kDa alpha 1 subunit, was observed as a minor phosphopeptide whose level of phosphorylation was not significantly affected by stimulation of endogenous cA-PK in the myotubes. The COOH-terminal sites, designated tryptic phosphopeptides 4, 5, and 6, were identified as serine 1757 (phosphopeptides 4 and 6) and 1854 (phosphopeptide 5) by a combination of protease cleavage, phosphorylation of synthetic peptides and fusion proteins, specific immunoprecipitation, and phosphopeptide mapping. Phosphorylation of serines 1757 and 1854 in the COOH-terminal region of the 212-kDa alpha 1 subunit in intact skeletal muscle cells may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   

13.
We report several unexpected findings that provide novel insights into the properties and interactions of the alpha 1 and beta subunits of dihydropyridine-sensitive L-type channels. First, the beta 2a subunit was expressed as multiple species of 68-72 kDa; the 70-72-kDa species arose from post-translational modification. Second, cell fractionation and immunocytochemical studies indicated that the hydrophilic beta 2a subunit, when expressed alone, was membrane-localized. Third, the beta 2a subunit increased the membrane localization of the alpha 1 subunit and the number of cells expressing L-type Ca2+ currents, without affecting the total amount of the expressed alpha 1C subunit. Expression of maximal currents in alpha 1C/beta 2a cotransfected cells paralleled the time course of expression of the beta subunit. Taken together, these results suggest that the beta subunit plays multiple roles in the formation, stabilization, targeting, and modulation of L-type channels.  相似文献   

14.
A novel fluorescent photoaffinity cross-linking probe, formyl-Met-p-benzoyl-L-phenylalanine-Phe-Tyr-Lys-epsilon-N-fluorescei n (fMBpaFYK-fl), was synthesized and used to identify binding site residues in recombinant human phagocyte chemoattractant formyl peptide receptor (FPR). After photoactivation, fluorescein-labeled membranes from Chinese hamster ovary cells were solubilized in octylglucoside and separated by tandem anion exchange and gel filtration chromatography. A single peak of fluorescence was observed in extracts of FPR-expressing cells that was absent in extracts from wild type controls. Photolabeled Chinese hamster ovary membranes were cleaved with CNBr, and the fluorescent fragments were isolated on an antifluorescein immunoaffinity matrix. Matrix-assisted laser desorption ionization mass spectrometry identified a major species with mass = 1754, consistent with the CNBr fragment of fMBpaFYK-fl cross-linked to Val-Arg-Lys-Ala-Hse (an expected CNBr fragment of FPR, residues 83-87). This peptide was further cleaved with trypsin, repurified by antifluorescein immunoaffinity, and subjected to matrix-assisted laser desorption ionization mass spectrometry. A tryptic fragment with mass = 1582 was observed, which is the mass of fMBpaFYK-fl cross-linked to Val-Arg-Lys (FPR residues 83-85), an expected trypsin cleavage product of Val-Arg-Lys-Ala-Hse. Residues 83-85 lie within the putative second transmembrane-spanning region of FPR near the extracellular surface. A 3D model of FPR is presented, which accounts for intramembrane, site-directed mutagenesis results (Miettinen, H. M., Mills, J., Gripentrog, J., Dratz, E. A., Granger, B. L., and Jesaitis, A. J. (1997) J. Immunol. 159, 4045-4054) and the photochemical cross-linking data.  相似文献   

15.
We investigated the modulation of the skeletal muscle L-type Ca2+ channel/dihydropyridine receptor in response to insulin-like growth factor-1 receptor (IGF-1R) activation in single extensor digitorum longus muscle fibers from adult C57BL/6 mice. The L-type Ca2+ channel activity in its dual role as a voltage sensor and a selective Ca2+-conducting pore was recorded in voltage-clamp conditions. Peak Ca2+ current amplitude consistently increased after exposure to 20 ng/ml IGF-1 (EC50 = 5.6 +/- 1.8 nM). Peak IGF-1 effect on current amplitude at -20 mV was 210 +/- 18% of the control. Ca2+ current potentiation resulted from a shift in 13 mV of the Ca2+ current-voltage relationship toward more negative potentials. The IGF-1-induced facilitation of the Ca2+ current was not associated with an effect on charge movement amplitude and/or voltage distribution. These phenomena suggest that the L-type Ca2+ channel structures involved in voltage sensing are not involved in the response to the growth factor. The modulatory effect of IGF-1 on L-type Ca2+ channel was blocked by tyrosine kinase and PKC inhibitors, but not by a cAMP-dependent protein kinase inhibitor. IGF-1-dependent phosphorylation of the L-type Ca2+ channel alpha1 subunit was demonstrated by incorporation of [gamma-32P]ATP to monolayers of adult fast-twitch skeletal muscles. IGF-1 induced phosphorylation of a protein at the 165 kDa band, corresponding to the L-type Ca2+ channel alpha1 subunit. These results show that the activation of the IGF-1R facilitates skeletal muscle L-type Ca2+ channel activity via a PKC-dependent phosphorylation mechanism.  相似文献   

16.
Adhesion to collagens by most cell types is mediated by the integrins alpha1beta1 and alpha2beta1. Both integrin alpha subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified alpha1beta1 and alpha2beta1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the alpha1 and alpha2 I domains in specific collagen adhesion. We find that introducing the alpha2 I domain into alpha1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (alpha1-2-1beta1) is similar to the adhesion profile conferred by alpha2beta1, not alpha1beta1. The presence of alpha2 or alpha1-2-1 results in preferential binding to collagen I, whereas alpha1 expressing cells bind better to collagen IV. In addition, alpha1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas alpha2 or alpha1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by alpha2beta1 or alpha1-2-1beta1, but not by alpha1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins.  相似文献   

17.
Integrin-mediated adhesion is a divalent cation-dependent process. Whether divalent cations directly participate in ligand binding or exert their effects indirectly by affecting the overall structure of the integrin heterodimers is not known. In this study we describe the epitope of the mAb H52 which has been mapped to a predicted disulfide-bonded loop (C386 and C400) in the beta2 integrin subunit. In the presence of Ca2+ and Mg2+, the H52 epitope is expressed on the monomeric beta2 subunit, the LFA-1 and Mac-1 heterodimers but not on p150,95, thus implying that this epitope is masked in p150,95. However, expression of the H52 epitope on Mac-1, but not on LFA-1, or the monomeric beta2 subunit, is dependent on the presence of Ca2+, thus suggesting that the chelation of Ca2+ causes a conformational change in Mac-1 which results in the loss of the epitope. These results suggest that expression of the H52 epitope on the beta2 subunit is dependent on its interaction with the different alpha subunits. Since the epitope itself is not required for heterodimer formation nor for ligand binding, occupancy of a Ca2+ binding site(s) must therefore affect the alphabeta subunit interactions, and thus the overall conformation of Mac-1.  相似文献   

18.
Semotiadil fumarate (SD-3211), a Ca2+ channel blocker of benzothiazine derivative and its (S)-(-)-enantiomer (SD-3212), inhibited K(+)- and norepinephrine (NE)-induced contractions in isolated rat aortas. Inhibition of NE contraction induced by both drugs was greater than that induced by diltiazem or bepridil, whereas inhibition of K(+)-contraction was similar to that induced by diltiazem or bepridil. Semotiadil and SD-3212 (10 microM) inhibited the increase in cytosolic Ca2+ ([Ca2+]i) induced by 65.4 mM K+ in fura-2-loaded preparations as well as diltiazem and bepridil (10 microM). On the other hand, semotiadil and SD-3212 (10 microM) inhibited only the early phase of increase in [Ca2+]i induced by 1 microM NE. After 5 min, no significant effect on [Ca2+]i was observed with these compounds despite the significant decrease in the contraction. In contrast to these compounds, diltiazem and bepridil 10 microM affected neither the increase in [Ca2+]i nor the contraction induced by NE. Semotiadil and SD-3212 inhibited the transient contraction induced by 1 microM NE in the absence of external Ca2+. Both compounds partially but significantly inhibited the NE-induced contraction in nifedipine-treated muscles. These results suggest that semotiadil and SD-3212 inhibit contractions of vascular smooth muscle (VSM) not only through blockade of voltage-dependent Ca2+ channels but also through other mechanisms, such as inhibition of Ca2+ release from Ca2+ stores or decrease in sensitivity of the contractile elements to Ca2+.  相似文献   

19.
Run-down of L-type Ca2+ channels in CHO cells stably expressing alpha 1c, alpha 1c beta 1a, or alpha 1c beta 1a alpha 2 delta gamma subunits was studied using the patch-clamp technique (single channel recording). The channel activity (NPo) of alpha 1c channels was increased 4- and 8-fold by coexpression with beta 1a and beta 1a alpha 2 delta gamma, respectively. When membranes containing channels composed of different subunits were excised into basic internal solution, the channel activity exhibited run-down, the time-course of which was independent of the subunit composition. The run-down was restored by the application of calpastatin (or calpastatin contained in cytoplasmic P-fraction) + H-fraction (a high molecular mass fraction of bovine cardiac cytoplasm) + 3 mM ATP, which has been shown to reverse the run-down in native Ca2+ channels in the guinea-pig heart. The restoration level was 64.7, 63.5, and 66.4% for channels composed of alpha 1c, alpha 1c beta 1a, and alpha 1c beta 1a alpha 2 delta gamma, respectively, and was thus also independent of the subunit composition. We conclude that run-down of L-type Ca2+ channels occurs via the alpha 1 subunit and that the cytoplasmic factors maintaining Ca2+ channel activity act on the alpha 1 subunit.  相似文献   

20.
The cGMP-gated channel of the rod photoreceptor cell plays a key role in phototransduction by controlling the flow of Na+ and Ca2+ into the outer segment in response to light-induced changes in cGMP concentrations. The rod channel is composed of two homologous subunits designated as alpha and beta. Each subunit contains a core region of six putative membrane spanning segments, a cGMP binding domain, a voltage sensor-like motif and a pore region. In addition the beta-subunit contains an extended N-terminal region that is identical in sequence to a previously cloned retinal glutamic acid rich protein called GARP. Three spliced variants of GARP (the GARP part of the beta channel subunit; full length free GARP; and a truncated form of GARP) are expressed in rod cells and localized within the outer segments. Immunoaffinity chromatography has been used to purify the channel from detergent solubilized rod outer segments. A significant fraction of the rod Na+/Ca(2+)-K+ exchanger copurifies with the channel as measured by western blotting suggesting that the channel can interact with the exchanger under certain conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号