首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
一种蒽醌基双马来酰亚胺及其胶粘剂的制备   总被引:1,自引:0,他引:1  
以2,6—二胺蒽醌及顺丁烯二酸酐为原料合成了一种蒽醌基双马来酰亚胺(DEBMI),以此双马来酰亚胺树脂为主体,以4,4′—双(对氨基苯酮)二苯醚为固化剂,以二烯丙基双酚A为增韧剂,合成耐热胶粘剂,该胶粘剂具有良好的工艺性能和耐热性能。  相似文献   

2.
测井钻杆用复合材料研制及应用   总被引:1,自引:1,他引:0  
采用二烯丙基双酚A、F-51酚醛环氧树脂、甲基四氢苯酐、液体端羧基丁氰橡胶改性4,4'-双马来酰亚胺基二苯甲烷(BDM),采用热压罐工艺与玻璃纤维复合为复合材料.性能测试结果表明,该复合材料具有较高的玻璃化温度、极好的断裂延展性、与钢具有很高的粘接强度,很好地满足了测井钻杆的特殊使用要求.  相似文献   

3.
《中国涂料》2015,(7):33-36
为改善环氧树脂耐疲劳性、耐热性和抗冲击韧性,选用有机硅和双马来酰亚胺对环氧树脂改性。试验使用有机硅对环氧树脂改性,采用4,4'-二氨基二苯甲烷(DDM)对双马来酰亚胺(BMI)进行二元胺扩链改性,再将二者复合,确定了参考配方和技术指标。  相似文献   

4.
双马来酰亚胺/烯丙基双酚A共聚树脂的改性研究   总被引:1,自引:0,他引:1  
本文对典型的4,4’-二氨基二苯甲烷双马来酰亚胺/3,3’-二烯丙基双酚A(BMI/DP)共聚树脂进行改性。结果表明,使用热引发剂能有效地降低树脂固化反应温度,但所得固化物脆性变大;共混热塑性树脂的增韧效果优于软相橡胶增韧;加入少量的环氧树脂或低粘度活性单体改性剂有利于纤维预浸料工艺性的改善。  相似文献   

5.
《粘接》2017,(4)
采用二苯甲烷型双马来酰亚胺(BDM)和二甲基二乙氧基硅烷(DMDES)共同改性双酚A型环氧树脂(EP/CYD-127)/芳香胺(DDM)固化体系,并对改性后的环氧树脂进行力学性能和热学性能分析。结果表明改性后的环氧树脂浇铸体具有优良的韧性和耐热性。当BDM质量分数为5%(DMDES质量分数为4%)时,改性后环氧树脂弯曲强度达到92.11 MPa,冲击强度达20.202k J/m;热失重率50%时温度到达399.992℃,残炭率为17.88%。  相似文献   

6.
硼酚醛改性BMI树脂的研究   总被引:1,自引:0,他引:1  
在传统的4,4-双马来酰亚胺基二苯甲烷/二烯丙基双酚A体系中引入硼酚醛结构,以改善传统双马来酰亚胺(BM)树脂的燃烧性能,结果表明,在一定范围内随着硼酚醛结构含量的增加,明显提高了BMI体系在空气中的热分解温度,改善了BMI体系的燃烧性能,而原BMI体系的工艺性能及力学性能保不变。  相似文献   

7.
以二苯甲烷双马来酰亚胺和二烯丙基双酚A为共聚单体,在适当的催化剂等作用下,制备了一种改性双马来酰亚胺共聚树脂。本文对这种改性的双马来酰亚胺共聚树脂的溶解性能、固化反应动力学和固化机理进行了讨论;对体系固化物的机电热性能及其胶粘剂的高低温粘接性能也进行了研究。  相似文献   

8.
曾小亮  于淑会  孙蓉  杜如虚 《化工进展》2011,30(5):1050-1053,1068
以4,4′-二苯甲烷双马来酰亚胺、双酚A型氰酸酯和2,2-二烯丙基双酚A为基本原料制备了改性双马来酰亚胺-三嗪(BT)树脂。系统地研究了2,2-二烯丙基双酚A对BT树脂固化动力学、BT树脂的溶解性能和BT树脂固化物的热性能的影响。研究结果表明:烯丙基双酚A有效地降低了BT树脂的固化反应温度并提高了BT树脂的溶解性能。当烯丙基双酚A的加入量为20%(质量分数)时,BT树脂的固化反应峰值降至233.1 ℃;并且,其固化物的玻璃化转变温度仍然达到239.4 ℃,5%热失重温度为372.9 ℃,显示了良好的耐热性能。  相似文献   

9.
按照马来酰亚胺基团和烯丙基基团物质的量比为1∶0.87将寡聚双马来酰亚胺(PPCBMI)与o,o′-二烯丙基双酚A(DABPA)和二苯甲烷型双马来酰亚胺(BDM)反应合成了新型三元共聚双马来酰亚胺树脂。采用示差扫描量热分析、热重分析、动态机械分析及力学性能测试研究了PPCBMI含量对树脂的固化行为,固化物的耐热性、动态热机械性能和力学性能的影响。结果表明,PPCBMI可以有效地增韧BDM/DABPA体系,由于引入了大体积的Cardo结构,获得了耐热性与韧性兼具的理想树脂。  相似文献   

10.
采用二烯丙基双酚A、烯丙基酚醛改性4,4'-二氨基二苯甲烷双马来酰亚胺共聚制备了一类新型的双马来酰亚胺树脂(简称ABD)。以ABD为基体,选用热塑性树脂聚醚酰亚胺(PEI)为增韧剂,采用共混法制备了共聚双马来酰亚胺/聚醚酰亚胺(PEI)树脂体系。采用DSC和流变仪对ABD树脂的固化行为进行了研究,结果表明,该树脂粘度较低,室温下为液态,树脂的冲击强度为8.99 kJ/m2。通过DMA、TGA和扫描电镜对PEI加入量对树脂热性能和微观形貌的影响表明,添加质量分数为15%聚醚酰亚胺时,树脂冲击强度达到16.9 kJ/m2,比基体树脂提高了88%。  相似文献   

11.
A three‐component bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane (BDM), o,o′‐diallyl bisphenol A (DBA), and o,o′‐dimethallyl bisphenol A (1.0/0.3/0.7 eq ratio) was used as a parent bismaleimide resin. Modification of the three‐component bismaleimide resin was examined by blending it with poly(ether ketone ketone)s. Poly(ether ketone ketone)s include poly(phthaloyl diphenyl ether) (PPDE), poly(phthaloyl diphenyl ether‐co‐isophthaloyl diphenyl ether) (PPIDE), and poly(phthaloyl diphenyl ether‐co‐terephthaloyl diphenyl ether) (PPTDE). The PPIDE (51 mol % isophthaloyl) and PPTDE (44 mol % terephthaloyl) were more effective as modifiers for the bismaleimide resin than was PPDE. For example, the fracture toughness (KIC) for the modified resin increased 30% with no deterioration in the flexural strength and modulus with a 15 wt % inclusion of PPTDE (MW 23,400) compared to the parent three‐component bismaleimide resin: the KIC increased 95% compared to the value for the Matrimid 5292 resin composed of BDM and DBA. The morphologies of the modified resins changed from particulate to cocontinuous phase structures, depending on the modifier structure and concentration. Toughening of the cured bismaleimide resin could be achieved because of the cocontinuous phase structure. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2991–3000, 2001  相似文献   

12.
采用十八烷基三甲基氯化铵(OTAC)作为改性剂、通过离子交换法制备了改性蒙脱土(OTAC-MMT);以4,4'-二氨基二苯甲烷双马来酰亚胺(MBMI)、3,3'-二烯丙基双酚A(BBA)及双酚A双烯丙基醚(BBE)为原料制备了复合材料基体(MBAE);利用原位聚合法将OTAC-MMT和聚醚砜(PES)掺杂基体中制备OTAC-MMT/PES-MBAE复合材料。XRD结果分析表明:OTAC-MMT层间距相对于Na-MMT有明显增大。SEM微观形貌显示:OTAC-MMT片层结构更加明显且分散均匀;复合材料的表面更加粗糙,改性蒙脱土分散均匀,PES与基体树脂呈两相结构,出现了向不同方向发展的银纹和微裂纹,呈韧性断裂。当OMMT质量分数为2%、PES为3%时,OTAC-MMT/PES-MBAE复合材料的冲击强度和弯曲强度分别为14.54 kJ·m-2和149.12 MPa,较MBAE树脂分别提高了55.5%和47.2%。介电性能测试表明:OTAC-MMT/PES-MBAE复合材料介电常数和损耗略有上升,但仍满足材料的使用要求。  相似文献   

13.
Poly(ether ketone ketone)s were prepared and used to improve the brittleness of the bismaleimide resin. The bismaleimide resin was composed of 4,4′-bismaleimidediphenyl methane (BMI) and o,o′-diallyl bisphenol A (DBA). Poly(ether ketone ketone)s include poly(phthaloyl diphenyl ether) (PPDE), poly(phthaloyl diphenyl ether-co-isophthaloyl diphenyl ether) (PPIDE), and poly(phthaloyl diphenyl ether-co-terephthaloyl diphenyl ether) (PPTDE). PPIDE (50 mol % isophthaloyl unit) was more effective as a modifier for the bismaleimide resin than were PPDE and PPTDE (50 mol % terephthaloyl unit). Morphologies of the modified resins changed from particulate to cocontinuous and to phase-inverted structures, depending on the modifier structure and content. The most effective modification for the cured resins could be attained because of the cocontinuous phase or phase-inverted structure of the modified resins. For example, when using 10 wt % of PPIDE (50 mol % IP unit, MW 349,000), the modified resin had a phase-inverted morphology and the fracture toughness (KIC) for the modified resins increased 75% with retention in flexural properties and the glass transition temperature, compared to those of the unmodified cured bismaleimide resin. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:769–780, 1998  相似文献   

14.
以4,4-二苯甲烷双马来酰亚胺、二氨基二苯甲烷、环氧树脂为主要原料合成性能优良的改性聚酰亚胺树脂体系;以此树脂为基体、玻璃纤维布为增强材料制作的复合材料具有玻璃化温度高、机械强度好、介电常数低等优异的综合性能,可用于制作耐高温、高强度绝缘材料。  相似文献   

15.
Aromatic polyesters were prepared and used to improve the brittleness of bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane and o,o′‐diallyl bisphenol A (Matrimid 5292 A/B resin). The aromatic polyesters included PEPT [poly(ethylene phthalate‐co‐ethylene terephthalate)], with 50 mol % of terephthalate, PEPB [poly(ethylene phthalate‐co‐ethylene 4,4′‐biphenyl dicarboxylate)], with 50 mol % of 4,4′‐biphenyl dicarboxylate, and PEPN [poly(ethylene phthalate‐co‐ethylene 2,6‐naphthalene dicarboxylate)], with 50 mol % 2,6‐naphthalene dicarboxylate unit. The polyesters were effective modifiers for improving the brittleness of the bismaleimide resin. For example, inclusion of 15 wt % PEPT (MW = 9300) led to a 75% increase in fracture toughness, with retention in flexural properties and a slight loss of the glass‐transition temperature, compared with the mechanical and thermal properties of the unmodified cured bismaleimide resin. Microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism was assessed as it related to the morphological and dynamic viscoelastic behaviors of the modified bismaleimide resin system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2352–2367, 2001  相似文献   

16.
A new propargyl‐functional resin, propargyl ether bisphenol A novolac (PBPN), was synthesized, and the structure of PBPN were characterized using 1H NMR and FTIR spectra. The PBPN was blended with 4,4′‐bismaleimide diphenyl methane (BDM) at different molar ratio to obtain the blends. Differential scanning calorimetry (DSC) was used to characterize the cure behavior of PBPN and the blends. Thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were performed, respectively, to evaluate thermal stability and dynamic mechanical properties of the cured resins. The results indicate that the PBPN presented better cure and thermal properties than do traditional propargyl resins; furthermore, the cure behavior and thermal properties of PBPN could be improved remarkably by blending with BDM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4207–4212, 2006  相似文献   

17.
采用改进Hummers法制备氧化石墨烯(GO),分别采用水合肼、壳聚糖、KOH还原得到了还原氧化石墨烯(rGO)并对三种还原方法做了对比,选择最佳方案;再通过离子液体(NH2IL)对rGO功能化得到改性还原氧化石墨烯(NH2IL-rGO)。以二烯丙基双酚A (BBA)和双酚A双烯丙基醚(BBE)为活性稀释剂,4,4'-二氨基二苯甲烷型双马来酰亚胺(MBMI)为反应单体,制备了MBMI-BBA-BBE (MBAE)树脂基体;同时以NH2IL-rGO为增强体采用原位聚合法制备NH2IL-rGO/MBAE复合材料。表征了石墨烯和复合材料的微观形貌并分析了石墨烯对复合材料性能的影响。结果表明:NH2IL-rGO在树脂基体中以两相形式存在,结构完整,并赋予复合材料优异的性能。当NH2IL-rGO含量为2%(质量)时,复合材料冲击强度和弯曲强度最大,分别为15.33 kJ/m2和142 MPa,热分解温度为435.73℃、当测试频率为100 Hz~10 kHz时介电常数发生突变达到84。  相似文献   

18.
A modified bismaleimide (BMI) resin system for resin transfer molding was prepared by using o,o′‐diallyl bisphenol A ether and 1,4‐diallyl phenyl ether as reactive diluents for BMI. The processing behavior was studied through time–temperature–viscosity curves, gel characteristics, and differential scanning calorimetry. The results indicate that the injection temperature can be 80°C, at which its apparent viscosity is only 0.30 Pa · s. Moreover, after it had been maintained at 80°C for 15 h, the apparent viscosity was still less than 1.00 Pa · s. The cured resin had remarkable heat resistance, hot/wet resistance, and mechanical properties. The heat stability and mechanical properties of the composite based on this resin system and woven glass cloth are also discussed. For short beam shear strength, in tests at 150 and 180°C, 90 and 65% of the original room temperature strength was retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1649–1653, 1999  相似文献   

19.
Poly(ester imide)s containing trimellitimide moieties have been used to reduce the brittleness of the bismaleimide resin composed of 4,4′‐bismaleimidediphenyl methane and o,o′‐diallyl bisphenol A. The poly(ester imide)s include poly[ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s containing 20–40 mol% trimellitimide (TI) unit, and poly[trimethylene phthalate‐co‐trimethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s (PESIP) containing 20 mol% TI unit. The poly(ester imide)s are effective modifiers for reducing the brittleness of the bismaleimide resin. For example, when using 30 wt% of PESIP (20 mol% TI unit, Mw 13 500 g mol?1), the fracture toughness (KIC) for the modified resin is increased by 80% with retention in flexural properties and a slight loss of the glass transition temperature, compared with the values of the unmodified cured bismaleimide resin. Microstructures of the modified resins have been examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified bismaleimide resin system. © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号