首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
To improve the physicomechanical properties of jute yarn, grafting with 1,6‐hexanediol diacrylate (HDDA) monomer was performed by a UV radiation technique. A series of HDDA solutions of various concentrations in methanol were prepared. A small quantity of photoinitiator (Darocur‐1664) was also added to HDDA solutions. To optimize the conditions for grafting, the effects of monomer concentration, soaking time, and radiation doses were studied by varying the number of soaking times along with variation of monomer concentrations and UV radiation intensities. The extent of polymer loading and the mechanical properties like tensile strength (TS), elongation at break (Eb), and tensile modulus of both treated and untreated jute were investigated. The highest tensile strength, polymer loading, and modulus were achieved with 5% HDDA concentration, 5 min soaking time, and the 4th pass of UV radiation. This set of conditions was selected as optimum and produced enhanced tensile strength (67%), modulus (108%), and polymer loading (11%) over those of virgin fiber. To further improve the mechanical properties the jute yarns were pretreated with alkali (5% NaOH) solution and after that the alkali‐treated yarn were treated under UV radiation of various intensities. The pretreated samples were grafted with optimized monomer concentration (5% HDDA). Increased properties of alkali + UV‐pretreated and grafted samples such as polymer loading (12%), tensile strength (103%), elongation at break (46%), and modulus (114%) were achieved over those of virgin jute yarn. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 18–24, 2004  相似文献   

2.
Composites based on phenolic matrices and both untreated and alkali and ionized air–treated jute fibers were prepared. Different fiber lengths and fiber content were used to reinforce the phenolic matrices. The jute fibers were characterized with respect to lignin, holocellulose, ash, and humidity contents and also to the crystallinity index. The mechanical properties of fibers were investigated by means of tensile analysis and the morphology by SEM. The untreated and treated jute fiber–reinforced composites were characterized as to water absorption. The mechanical property and morphological aspects of the composites were evaluated by impact strength and photomicrographs obtained from SEM. Among the jute fiber treatments considered in the present work, the treatment with a solution of 5% NaOH presented the best results because: (1) the fiber presented a higher tensile strength, and a larger percentage of elongation at break; (2) the composite reinforced with this fiber presented the highest impact strength results when this was the unique treatment (20% of fiber), as well as when it was combined with ionized air (30% of fiber); and (3) the composite that presented the lowest water uptake was that reinforced with this fiber. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1077–1085, 2004  相似文献   

3.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

4.
Jute yarns treated with MMA + MeOH solutions were irradiated either with Co‐60 gamma source or with UV radiation. In gamma radiation, polymer loading of MMA (methyl methacrylate) onto jute increased quite substantially, but the strength of the composite decreases sharply after 15% polymer loading. The gamma‐treated jute samples were very brittle. On the other hand, jute yarns irradiated in situ under UV radiation was found to be grafted with MMA. The tensile strength of the UV‐cured jute yarn composite increases with an increase of grafting level, in contrast to the behavior observed with the gamma‐irradiated jute composite samples. The tensile properties of the composites can be further enhanced by the incorporation of certain additives and coadditives into MMA + MeOH solutions. This opens diverse applications for jute materials. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 900–906, 1999  相似文献   

5.
The natural fiber reinforced biodegradable polymer composites were prepared with short jute fiber as reinforcement in PLA (Poly lactic acid) matrix. The short jute fiber is successively treated with NaOH at various concentrations (5%, 10%, and 15%) and H2O2. The composites were prepared with untreated and treated short jute fibers at different weight proportions (up to 25%) in PLA and investigated for mechanical properties. The results showed that the composite with successive alkali treated jute fiber at 10% NaOH and H2O2 with 20% fiber loading has shown 18% higher flexural strength than neat PLA and untreated jute/PLA composite. The flexural modulus of the composite at 25% fiber loading was 125% and 110% higher than that of composites with untreated fibers and neat PLA, respectively. The impact strength of composite with untreated fibers at higher fiber weight fraction was 23% high as compared to neat PLA and 26% high compared to composite with treated fibers. The water absorption was more for untreated jute/PLA composite at 25% fiber loading than all other composites. The composite with untreated fibers has high thermal degradation compared with treated fibers but lower than that of pure PLA matrix. The enzymatic environment has increased the rate of degradation of composites as compared to soil burial. Surface morphology of biodegraded surfaces of the composites were studied using SEM method. POLYM. COMPOS., 37:2160–2170, 2016. © 2015 Society of Plastics Engineers  相似文献   

6.
Cyanoethylation of jute fibers in the form of nonwoven fabric was studied, and these chemically modified fibers were used to make jute–polyester composites. The dynamic mechanical thermal properties of unsaturated polyester resin (cured) and composites of unmodified and chemically modified jute–polyester were studied by using a dynamic mechanical analyzer over a wide temperature range. The data suggest that the storage modulus and thermal transition temperature of the composites increased enormously due to cyanoethylation of fiber. An increase of the storage modulus of composites, prepared from chemically modified fiber, indicates its higher stiffness as compared to a composite prepared from unmodified fiber. It is also observed that incorporation of jute fiber (both unmodified and modified) with the unsaturated resin reduced the tan δ peak height remarkably. Composites prepared from cyanoethylated jute show better creep resistance at comparatively lower temperatures. On the contrary, a reversed phenomenon is observed at higher temperatures (120°C and above). Scanning electron micrographs of tensile fracture surfaces of unmodified and modified jute–polyester composites clearly demonstrate better fiber–matrix bonding in the case of the latter. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1505–1513, 1999  相似文献   

7.
采用转矩流变仪混合造粒,通过注射成型方法制备了聚丙烯(PP)/黄麻纤维复合材料,研究了对纤维表面进行处理的NaOH浓度、纤维含量和相容剂的含量对PP/黄麻纤维复合材料力学性能的影响,采用扫描电镜对纤维表面及复合材料的断面形貌进行分析。结果表明:黄麻纤维经过碱处理后PP/黄麻纤维复合材料的力学性能优于纤维未处理的复合材料的力学性能,随着NaOH浓度的提高,PP/黄麻纤维复合材料的拉伸强度和冲击强度增加,在NaOH浓度为16%时,其拉伸强度和冲击强度最佳;其弯曲强度随着NaOH浓度的提高先增加而后下降,在8%浓度时,弯曲强度最大。随着纤维含量的提高,PP/黄麻纤维复合材料的拉伸强度和弯曲强度先增加后下降,在纤维含量达到20%时,PP/黄麻纤维合材料的拉伸强度和弯曲强度达到最大。随着纤维含量的提高,PP/黄麻纤维复合材料的冲击强度降低。相容剂的加入使得PP/黄麻纤维复合材料的拉伸强度和弯曲强度明显增加。  相似文献   

8.
This article reports the fabrication, properties, and degradation studies of jute fiber–reinforced thermoplastic polymers. One of the non-traditional outlets of jute fiber is in the area of fiber-reinforced composites. However, the major drawback associated with the application of jute fiber for this purpose is its high moisture regain. To impart hydrophobicity to the fibers and to concomitantly increase interfacial bond strength, which is a critical factor for obtaining better mechanical properties of composites, jute fibers were treated with benzoylchloride, Y-glycidoxytrimethoxysilane, and neo-alkoxy-tri(N-ethylenediamino)ethyltitanate. Such a treatment resulted in an increase in the diameter and denier of the treated fibers, and deterioration in the mechanical properties was observed. SEM studies revealed an increase in surface roughness after titanate and alkali treatment, which in turn increases interfacial bond strength. A series of low-density polyethylene (LDPE) blends with 5–20% (w/w) of poly(e-caprolactone) (PCL) and with/without treated and untreated jute fibers were prepared by using a single-screw extruder. LDPE modified by blending with PCL (80:20, wt/wt) was used as a thermoplastic matrix. Composites were fabricated by using 1-cm-long jute fibers; the weight fraction of unmodified fibers, silane-treated fibers, and titanate-treated fibers was varied from 0.05 to 0.13. An increase in weight fraction of fibers resulted in an increase in tensile strength and modulus and decrease in elongation at break. Thin sheets and dumbbells were used for enzymatic degradation tests. The degradation of the material was monitored by weight change and loss of mechanical properties. The enzymatic degradation in the presence of Pseudomonas cepacia lipase gave appreciable weight loss in PCL and blended materials.  相似文献   

9.
Ramie yarns were treated with various concentrations of NaOH at room temperature and subsequently crosslinked with 1,2,3,4‐butanetetracarboxylic acid (BTCA). The microstructure and tensile properties of the treated yarns were characterized. X‐ray diffraction (XRD) and FTIR were used to study the crystalline structure of the resultant ramie yarns. The results showed that the maximum change in the structure of the alkali‐modified ramie took place at 16% NaOH, which would completely transform cellulose I to cellulose II. At the same time, the crystallinity index and fiber orientation decreased to the minimum value while the absorption properties were enhanced. The average degree of polymerization (DP ) of the treated ramie yarns slightly decreased after NaOH treatment. Tensile properties including tenacity, breaking elongation, and modulus of the treated yarns were also investigated. Scanning electron microscopy (SEM) was used to investigate the breakage of the treated yarns. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1857–1864, 2004  相似文献   

10.
Composites and hybrid composites were manufactured from renewable materials based on jute fibers, regenerated cellulose fibers (Lyocell), and thermosetting polymer from soybean oil. Three different types of jute fabrics with biaxial weave architecture but different surface weights, and carded Lyocell fiber were used as reinforcements. Hybrid composites were also manufactured by combining the jute reinforcements with the Lyocell. The Lyocell composite was found to have better mechanical properties than other composites. It has tensile strength and modulus of about 144 MPa and 18 GPa, respectively. The jute composites also have relatively good mechanical properties, as their tensile strengths and moduli were found to be between 65 and 84 MPa, and between 14 and 19 GPa, respectively. The Lyocell‐reinforced composite showed the highest flexural strength and modulus, of about 217 MPa and 13 GPa, respectively. In all cases, the hybrid composites in this study showed improved mechanical properties but lower storage modulus. The Lyocell fiber gave the highest impact strength of about 35 kJ/m2, which could be a result of its morphology. Dynamic mechanical analysis showed that the Lyocell reinforced composite has the best viscoelastic properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Jute yarns were grafted with three types of vinyl monomers of different functionalities such as methyl acrylate (MA), ethyl acrylate (EA), and 2‐hydroxyethyl acrylate (HEA) with ultraviolet radiation. The graft copolymerization reaction between the cellulose of the jute fibers and the monomer and the chemical environment of the treated fibers were confirmed by Fourier transform infrared spectroscopy. The reduction of OH groups and increment of >C?O groups in treated jute yarns were observed. DSC studies showed that the treated jute fibers were more thermally stable compared to the untreated one. The surface topography of the yarns was analyzed by an environmental scanning electron microscope. Different parameters, such as concentration of monomers and irradiation time, were optimized with the extent of mechanical properties such as tensile strength and elongation at break of the jute yarn. MA, EA, and HEA produced enhanced tensile strengths of 87, 78, and 85%, respectively. The monomers MA, EA, and HEA showed improved elongations at break of 118, 91, and 76%, respectively. The water uptake of treated and untreated jute yarns were studied. The maximum water uptake was observed of the grafted sample compared to the untreated jute yarn. The effects of additives such as urea on mechanical properties were also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 993–1000, 2003  相似文献   

12.
In this study, the continuous twisted PLLA yarns were produced using an electrospinning device consists of two oppositely charged nozzles. The electrospinning process was performed at different twist rates. The electrospun twisted yarns were drawn at different extension ratios of 50% and 100% and their morphological and mechanical properties of post‐drawn yarns were investigated. The morphological studies at all twist rates shown that uniform and smooth fibers without any bead were formed. Increasing the twist rate up to 240 rpm resulted to a decrease in the average diameter of the fibers in the yarn structure. After uniaxially drawing of the yarns, the average diameter of fibers and thus the yarn diameter decreased. The post‐drawing process enhanced the crystallinity of the fibers in the yarn structure. Furthermore, by increasing the extension ratio, the tensile strength and modulus of yarns increased, while the elongation at break (%) decreased. POLYM. ENG. SCI., 58:1091–1096, 2018. © 2017 Society of Plastics Engineers  相似文献   

13.
Coir fiber native to the Brazilian northeast coast has been characterized by mechanical, thermal, and microscopy techniques. The tensile strength, initial modulus, and elongation at break were evaluated for untreated and alkaline‐treated fibers. The results showed an enhancement of mechanical properties after 48‐h soaking in 5 wt % NaOH. The thermal stability slightly decreased after this alkaline treatment. A thermal event was observed between 28 and 38°C. The heat capacity, Cp, as a function of temperature curves between −70 and 150°C, were obtained for the untreated and alkaline‐treated coir fibers. The morphologies of the coir‐fiber surfaces and cross sections were observed by scanning electron microscopy. The properties and the morphologies were discussed, comparing the native Brazilian coir fiber with the more extensively studied native Indian coir fiber. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1197–1206, 2000  相似文献   

14.
In this study, the jute/polypropylene nonwoven reinforced composites were prepared using film stacking method. The surface of jute fibers was modified using alkali treatment. These alkali treated jute fiber nonwoven composites were analyzed for their tensile and flexural properties. Increasing the amount of jute fibers in the nonwovens has improved the mechanical properties of their composites. The effect of stacking sequence of preferentially and nonpreferentially aligned nonwovens within the composites was also investigated. The flexural and tensile moduli of composites were found to be significantly enhanced when nonwovens consisting of preferentially and nonpreferentially aligned jute fibers were stacked in an alternate manner. The existing theoretical models of tensile modulus of fiber reinforced composites have been analyzed for predicting the tensile modulus of nonwoven composites. In general, a good agreement was obtained between the experimental and theoretical results of tensile modulus of nonwoven composites. POLYM. COMPOS., 35:1044–1050, 2014. © 2013 Society of Plastics Engineers  相似文献   

15.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

16.
Composites with different jute fabric contents and polypropylene (PP) were prepared by compression molding. The composite tensile modulus increased as the fiber content increased, although the strain at break decreased due to the restriction imposed on the deformation of the matrix by the rigid fibers. Moreover, and despite the chemical incompatibility between the polar fiber and the PP matrix, the tensile strength increased with jute content because of the use of long woven fibers. The interfacial adhesion between jute and PP was improved by the addition of different commercial maleated polypropylenes to the neat PP matrix. The effect of these coupling agents on the interface properties was inferred from the resulting composite mechanical properties. Out‐of‐plane instrumented falling weight impact tests showed that compatibilized composites had lower propagation energy than uncompatibilized ones, which was a clear indication that the adhesion between matrix and fibers was better in the former case since fewer mechanisms of energy propagation were activated. These results are in agreement with those found in tensile tests, inasmuch as the compatibilized composites exhibit the highest tensile strength. Scanning electron microscopy also revealed that the compatibilized composites exhibited less fiber pullout and smoother fiber surface than uncompatibilized ones. The thermal behavior of PP–compatibilizer blends was also analyzed using differential scanning calorimetry, to confirm that the improvements in the mechanical properties were the result of the improved adhesion between both faces and not due to changes in the crystallinity of the matrix. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
A tossa variety of jute fiber (Corchorus olitorious) treated with soap–glycerol micelles is characterized by infrared (IR) spectroscopy, X‐ray diffraction method, and tensilometry. The IR spectra for jute fibers treated with soap–glycerol micelles show a reduced absorption band due to O H stretching at a frequency of 3420 cm−1 with almost absent OH bending frequencies, prominent CH2 stretching and bending frequencies at 2915 and 1440 cm−1 and reduced skeletal vibration at 1060 cm−1. The percentage crystallinity measured by the X‐ray diffraction method increases from 45 to 53% on treated jute fibers. The tensile strength and strain percent at maximum load, Young's modulus, and work done per unit volume within an elastic limit (resilience) for treated fibers increased from 1.8 ± 0.2 to 3.43 ± 0.2 GPa, from 3.98 ± 0.1 to 4.75 ± 0.1, from 75 ± 2 to 113 ± 5 GPa, and from 26 ± 2 to 74 ± 3 MJ m−3, respectively. Using a stabilizing agent (2%) and a swelling agent (2% KOH), the tensile strength, strain percent, Young's modulus, and resilience increase to 4.02 ± 0.2 GPa, 4.85 ± 0.3, 154 ± 5 GPa, and 95 ± 4 MJ m−3, respectively. Under natural weathering at 12–30°C and 30–80% relative humidity over a prolonged period of 8 weeks, all the tensile properties for micelle‐treated fibers increase during the first 2 weeks of exposure and then decrease exponentially to the starting values. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 852–856, 2000  相似文献   

18.
Two types of long jute fiber pellet consisting of twisted‐jute yarn (LFT‐JF/PP) and untwisted‐jute yarn (UT‐JF/PP) pellets are used to prepare jute fiber–reinforced polypropylene (JF/PP) composites. The mechanical properties of both long fiber composites are compared with that of re‐pelletized pellet (RP‐JF/PP) of LFT‐JF/PP pellet, which is re‐compounded by extrusion compounding. High stiffness and high impact strength of JF/PP composites are as a result of using long fiber. However, the longer fiber bundle consequently affects the distribution of jute fiber. The incorporation of 10 wt % glass fibers is found to improve mechanical properties of JF/PP composites. Increasing mechanical properties of hybrid composites is dependent on the type of JF/PP pellets, which directly affect the fiber length and fiber orientation of glass fiber within hybrid composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41819.  相似文献   

19.
In this article, mechanical performance of isothalic polyester‐based untreated woven jute‐fabric composites subjected to various types of loading has been experimentally investigated. The laminates were prepared by hand lay‐up technique in a mold. Specimens for tests were fabricated as per ASTM standards. All the tests (except impact) were conducted on closed loop servo hydraulic MTS 810 material test system using data acquisition software Test Works‐II. From the results obtained, it was found that the tensile strength and tensile modulus of jute‐fabric composite are 83.96% and 118.97% greater than the tensile strength and modulus of unreinforced resin, respectively. The results of other properties, such as flexural, in‐plane shear, interlaminar shear, impact, etc., also revealed that the isothalic‐polyester‐based jute‐fabric composite have good mechanical properties and can be a potential material for use in medium load‐bearing applications. The failure mechanism and fiber‐matrix adhesion were analyzed by scanning electron microscope. Effects of long‐term immersion in water on mechanical properties are also presented. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2650–2662, 2007  相似文献   

20.
Hessian cloth (jute fabrics) reinforced poly(propylene) (PP) composites (45 wt% fiber) were prepared by compression molding and the mechanical properties were evaluated. Jute fabrics and PP sheets were treated with UV radiation at different intensities and then composites were fabricated. It was found that mechanical properties of the irradiated jute and irradiated PP-based composites were found to increase significantly compared to that of the untreated counterparts. Irradiated jute fabrics were also treated with aqueous starch solution (1–5%, w/w) for 2–10 min. Composites made of 3% starch-treated jute fabrics (5 min soaking time) and irradiated PP showed the best mechanical properties. Tensile strength, bending strength, tensile modulus, bending modulus and impact strength of the composites were found to improve 31, 41, 42, 46 and 84% higher over untreated composites. Water uptake, thermal degradation and dielectric properties of the resulting composites were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号