首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Contamination in deep vadose zone environments is isolated from exposure so direct contact is not a factor in its risk to human health and the environment. Instead, movement of contamination to the groundwater creates the potential for exposure and risk to receptors. Limiting flux from contaminated vadose zone is key for protection of groundwater resources, thus the deep vadose zone is not necessarily considered a resource requiring restoration. Contaminant discharge to the groundwater must be maintained low enough by natural attenuation (e.g., adsorption processes or radioactive decay) or through remedial actions (e.g., contaminant mass reduction or mobility reduction) to meet the groundwater concentration goals. This paper reviews the major processes for deep vadose zone metal and radionuclide remediation that form the practical constraints on remedial actions. Remediation of metal and radionuclide contamination in the deep vadose zone is complicated by heterogeneous contaminant distribution and the saturation-dependent preferential flow in heterogeneous sediments. Thus, efforts to remove contaminants have generally been unsuccessful although partial removal may reduce downward flux. Contaminant mobility may be reduced through abiotic and biotic reactions or through physical encapsulation. Hydraulic controls may limit aqueous transport. Delivering amendments to the contaminated zone and verifying performance are challenges for remediation.  相似文献   

2.
High-saturation pools of dense nonaqueous phase liquid (DNAPL) are long-term sources of groundwater contamination at many hazardous-waste sites. DNAPL pools consist of a high saturation zone with slow dissolution overlaid by a transition zone with lower saturations and more rapid dissolution. Effects of biological activity on pool dissolution must be understood to evaluate and implement bioremediation strategies. Bioenhanced dissolution of tetrachloroethene (PCE) in transition zones of high-saturation pools was investigated in a custom-designed 5-cm flow cell. Experiments were conducted to characterize mass transfer following DNAPL emplacement, with and without an active microbial culture capable of reductive dehalogenation. For average pool saturations < or = 0.55, mass transfer during biodegradation was enhanced by factors of 4-13, due primarily to high mass flux of PCE degradation products. However, at an average pool saturation of 0.74, mass transfer was enhanced by factors less than 1.5. Mass transfer was significantly greater from pools with an observable transition zone than without. Advective flow through multiphase transition zones enhanced dissolution and biological activity. These laboratory-scale experimental results suggest that biotechnologies may be effective remediation strategies for depletion of source zones within pool transition zones.  相似文献   

3.
Although in situ remediation technologies have been used to aggressively treat dense nonaqueous phase liquid (DNAPL) source zones, complete contaminant removal or destruction is rarely achieved. To evaluate the effects of partial source zone mass removal on dissolved-phase contaminant flux, four experiments were conducted in a two-dimensional aquifer cell that contained a tetrachloroethene (PCE) source zone and down-gradient plume region. Initial source zone PCE saturation distributions, quantified using a light transmission system, were expressed in terms of a ganglia-to-pool ratio (GTP), which ranged from 0.16 (13.8% ganglia) to 1.6 (61.5% ganglia). The cells were flushed sequentially with a 4% (wt.) Tween 80 surfactant solution to achieve incremental PCE mass removal, followed by water flooding until steady-state mass discharge and plume concentrations were established. In all cases, the GTP ratio decreased with increasing mass removal, consistent with the observed preferential dissolution of PCE ganglia and persistence of high-saturation pools. In the ganglia-dominated system (GTP = 1.6), greater than 70% mass removal was required before measurable reductions in plume concentrations and mass discharge were observed. For pool-dominated source zones (GTP < 0.3), substantial reductions (>50%) in mass discharge were realized after only 50% mass removal.  相似文献   

4.
A chlorinated solvent mixture (2.0 L of trichloroethylene, 0.5 L of chloroform, and 2.5 L of tetrachloroethylene) was released into a sandy aquifer to create a heterogeneously distributed DNAPL (dense nonaqueous-phase liquid) source. The dissolution and dissolved-phase plume development from this source were studied in detail along a cross-section downgradient of the source for a period of approximately 1 year. At the conclusion of the experiment, the site was excavated to map the actual distribution of solvent residuals in the subsurface. Multiple-component dissolution theory provides a tool for the estimation of the mass of a multiple-component DNAPL source present in the groundwater. Concentration ratios between the compounds change with time, and those changes can be used to estimate the mass of DNAPL upgradient of the monitoring point(s) or well(s). The method is independent of the dilution occurring in the groundwater and only requires observations of time series of the contaminants in one or more monitoring points. For the field experiment, the method was applied using the measured concentrations of individual sampling points, the depth-integrated concentrations, the area-integrated concentrations, and the effluent concentrations of the cell. The experiment showed that multiple-component dissolution theory may be a valuable tool for the estimation of the mass of multiple-component DNAPL residuals in the saturated zone.  相似文献   

5.
Remediation of DNAPL pools using dense brine barrier strategies   总被引:1,自引:0,他引:1  
Although dense nonaqueous phase liquid (DNAPL) pools are an important source of groundwater contamination, little experimental data have been generated to develop a mature level of understanding of the problem, and few strategies specifically aimed at remediation have been advanced. We discuss the dominant importance of these features in subsurface systems, present novel two- and three-dimensional heterogeneous experimental systems, and show results from two evolving strategies for remediating DNAPL pools. These strategies involve the joint use of a dense brine barrier and controlled mobilization of trapped DNAPL using small-volume surfactant flushes. These experiments demonstrate a controlled, substantial reduction of entrapped DNAPL in both two- and three-dimensional heterogeneous domains, using less than a single pore volume of flushing solution in some cases.  相似文献   

6.
Tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) can act as a persistent groundwater contamination source for decades. Biologically enhanced dissolution of pure PCE DNAPL has potential for reducing DNAPL longevity as indicated previously (Environ. Sci. Technol. 2000, 34, 2979). Reported here are expanded studies to evaluate donor substrates that offer different remediation strategies for bioenhanced DNAPL dissolution, including pentanol (soluble substrate, fed continuously), calcium oleate (insoluble substrate, placed in column initially by alternate pumping of sodium oleate and calcium chloride), and olive oil (mixed with PCE and placed in column initially). Compared with a no-substrate column control, the DNAPL dissolution rate was enhanced about three times when directly coupled with biological transformation. The major degradation product formed was cDCE, but significant amounts of VC and ethene were also found with some columns. Extensive methanogenesis, which reduced PCE transformation, occurred in both the pentanol-fed and oleate-amended columns, but not in the olive-oil-amended column, suggesting that methanogens managed to colonize column niches where PCE DNAPL was not present. Detrimental methane production in the pentanol-fed column was nearly eliminated by presaturating the feed solution with PCE. These results suggest potential DNAPL remediation strategies to enhance dehalogenation while controlling competitive methanogenic utilization of donor substrates.  相似文献   

7.
Dense nonaqueous phase liquids (DNAPL) are prevalent at a large number of sites throughout the world. The variable release history, unstable flow, and geologic heterogeneity make the spatial distribution of DNAPLs complex. This causes difficulties in site remediation contributing to long-term groundwater contamination for decades to centuries. We present laboratory experiments to demonstrate the efficacy of Sequential Successive Linear Estimator (SSLE) algorithm that images DNAPL source zones. The algorithm relies on the fusion of hydraulic and partitioning tracer tomography (HPTT) to derive the best estimate of the K heterogeneity, DNAPL saturation (S(N)) distribution, and their uncertainty. The approach is nondestructive and can be applied repeatedly. Results from our laboratory experiments show that S(N) distributions compare favorably with DNAPL distributions observed in the sandbox but not so with local saturation estimates from core samples. We also found that the delineation of K heterogeneity can have a large impact on computed S(N) distributions emphasizing the importance of accurate delineation of hydraulic heterogeneity.  相似文献   

8.
Although potassium permanganate (KMnO4) flushing is commonly used to destroy chlorinated solvents in groundwater, many of the problems associated with this treatment scheme have not been examined in detail. We conducted a KMnO4 flushing experiment in a large sand-filled flow tank (L x W x D = 180 cm x 60 cm x 90 cm) to remove TCE emplaced as a DNAPL in a source zone. The study was specifically designed to investigate cleanup progress and problems of pore plugging associated with the dynamics of the solid-phase reaction front (i.e., MnO2) using chemical and optical monitoring techniques. Ambient flow through the source zone formed a plume of dissolved TCE across the flow tank. The volume and concentration of TCE plume diminished with time because of the in situ oxidation of the DNAPL source. The migration velocity of the MnO2 reaction front decreased with time, suggesting that the kinetics of the DNAPL oxidation process became diffusion-controlled because of the pore plugging. A mass balance calculation indicated that only approximately 18% of the total applied KMnO4 (MnO4- = 1250 mg/ L) participated in the oxidation reaction to destroy approximately 41% of emplaced TCE. Evidently, the efficiency of KMnO4 flushing scheme diminished with time due to pore plugging by MnO2 and likely CO2, particularly in the TCE source zone. In addition, the excess KMnO4 used for flushing may cause secondary aquifer contamination. One needs to be concerned about the efficacy of KMnO4 flushing in the field applications. Development of a new approach that can provide both contaminant destruction and plugging/ MnO4- control is required.  相似文献   

9.
The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL, where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatmenttrain approach for complete site restoration, which combines an active in situ dense nonaqueous-phase liquid (DNAPL) removal technology, cosolvent extraction, with a passive enhanced in situ bioremediation technology, reductive dechlorination. During the in situ cosolvent extraction test, approximately 34 kL of 95% ethanol/5% water (v:v) was flushed through the contaminated zone, which removed approximately 60% of the estimated PCE mass. Approximately 2.72 kL of ethanol was left in the subsurface, which provided electron donorfor enhancement of biological processes in the source zone and downgradient areas. Quarterly groundwater monitoring for over 3 yr showed decreasing concentrations of PCE in the source zone from initial values of 4-350 microM to less than 150 microM during the last sampling event. Initially there was little to no daughter product formation in the source zone, but after 3 yr, measured concentrations were 242 microM for cis-dichloroethylene (cis-DCE), 13 microM for vinyl chloride, and 0.43 microM for ethene. In conjunction with the production of dissolved methane and hydrogen and the removal of sulfate, these measurements indicate that in situ biotransformations were enhanced in areas exposed to the residual ethanol. First-order rate constants calculated from concentration data for individual wells ranged from -0.63 to -2.14 yr(-1) for PCE removal and from 0.88 to 2.39 yr(-1) for cis-DCE formation. First-order rate constants based on the change in total mass estimated from contour plots of the groundwater concentration data were 0.75 yr(-1) for cis-DCE, -0.50 yr(-1) for PCE, and -0.33 yr(-1) for ethanol. Although these attenuation rate constants include additional processes, such as sorption, dispersion, and advection, they provide an indication of the overall system dynamics. Evaluation of the groundwater data from the former dry cleaner site showed that cosolvent flushing systems can be designed and utilized to aid in the enhancement of biodegradation processes at DNAPL sites.  相似文献   

10.
Surfactant-enhanced aquifer remediation (SEAR) is widely considered a promising technique to remediate dense nonaqueous phase liquid (DNAPL) contaminations in-situ. The costs of a SEAR remediation are important and depend mostly on the setup of the remediation. Costs can be associated with the installation of injection and extraction wells, the required time of the remediation (and thus labor costs, lease of installations, and energy), the extracted water volume (the purification of the extracted water), and the injected surfactant amount. A cost-effective design of the remediation setup allows an optimal use of resources. In this work, a SEAR remediation was simulated for a hypothetical typical DNAPL contamination. A constrained multi-objective optimization of the model was applied to obtain a Pareto set of optimal remediation strategies with different weights for the two objectives of the remediation: (i) the maximal removal of DNAPL mass (ii) with a minimal total cost. A relatively sharp Pareto front was found, showing a considerable tradeoff between DNAPL removal and total remediation costs. These Pareto curves can help decision makers select an optimal remediation strategy in terms of cost and remediation efficiency depending on external constraints such as the available budget and obligatory remediation goals.  相似文献   

11.
A pilot-scale demonstration of surfactant-enhanced aquifer remediation (SEAR) was conducted in July 2000 at the Bachman Road site located in Oscoda, MI. The Bachman aquifer is a shallow, relatively homogeneous, unconfined aquifer formation composed primarily of sandy glacial outwash with relatively low organic carbon content (0.02 wt %). A 6 wt % aqueous solution of Tween 80 (a nonionic, food-grade surfactant) was flushed through a localized dense nonaqueous phase liquid (DNAPL) source zone to recover approximately 19 L of tetrachloroethene (PCE). Post-treatment monitoring revealed PCE concentrations were reduced by up to 2 orders of magnitude within the source zone, and there was no evidence of concentration rebound after more than 450 d. Concentrations of PCE dechlorination products (trichloroethene, cis-1,2-dichloroethene) 450 d after SEAR operations ceased were more than 2 orders of magnitude greater than pretreatment values, suggesting stimulation of native dechlorination activity. Post-treatment monitoring detected increased concentrations of volatile fatty acids generated from the fermentation of residual-level Tween 80 surfactant. These field data suggest that Tween 80 not only induced and maintained anaerobiosis but also provided reducing equivalents to reductively dechlorinating populations present in the oligotrophic Bachman aquifer. Experience from this site supports application of staged treatment strategies that couple SEAR and microbial reductive dechlorination to enhance mass removal and reduce contaminant mass flux emanating from treated source zones.  相似文献   

12.
Field-scale dissolution of a multicomponent DNAPL (dense nonaqueous-phase liquid) source intentionally emplaced below the water table is evaluated in a well-characterized natural aquifer setting. The block-shaped source contained 23 kg of a trichloromethane, trichloroethene, and perchloroethene mixture homogeneously distributed at 5% saturation of pore space. Dissolution was monitored for 3 yr via down-gradient samplers (1-m fence) and occasional intra-source sampling. Although intra-source equilibrium dissolution was shown and endorsed by supporting modeling and literature lab data, less than equilibrium concentrations were predominantly monitored in the 1-m fence. This was ascribed to significant by-passing of the source by groundwater flow due to its low permeability relative to the aquifer and associated dilution of concentrations emitted from the source. Heterogeneous source dissolution occurred despite the relative homogeneity of the source and aquifer and was ascribed to dissolution fingering, which has not been previously field-demonstrated. Bulk bypass of groundwater flow around the source zone caused slow dissolution rates, with 77% of the source remaining after 3 yr and a projected longevity of approximately 25 yr. Observed dissolution fingering would have significantly increased longevity as it increasingly caused intra-source bypass of remaining DNAPL. Our dissolution interpretations were endorsed by additional data collected after 6 yr during source remediation via permanganate oxidation.  相似文献   

13.
This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.  相似文献   

14.
Three existing technologies (source containment, source reduction, and monitored natural attenuation) are integrated in barrier-controlled monitored natural attenuation (BCMNA)--a new approach for managing plumes of contaminated groundwater and remediating contaminated sites. The basic BCMNA concept uses a low-permeability, nonreactive barrier to release contaminants into an aquifer at a rate that optimizes natural attenuation. A simplified, one-dimensional model of the process is developed, and a hypothetical example of BCMNA is presented for a site contaminated with benzene. The analytical solution is used to demonstrate how contaminant concentrations can be controlled at a downgradient point of environmental compliance by manipulating design variables. BCMNA provides a greater degree of process control and risk reduction than monitored natural attenuation alone. BCMNA also holds promise for reducing remediation costs because (1) barriers can be constructed relatively inexpensively and (2) a cost-effective amount of source reduction can be applied inside the contained area with the BCMNA system remaining in place to safely complete the remediation process after source reduction is terminated. Further numerical modeling and a demonstration project are recommended to address important details and prove the concept.  相似文献   

15.
Surfactant-based remediation techniques have the potential to be very effective for removing dense nonaqueous-phase liquids (DNAPLs) from contaminated sites. However, a risk associated with surfactant-based remediation of DNAPLs is the potential for unwanted downward mobilization of the DNAPL contaminants, making them more difficult to remove from the subsurface. The work described here examines the use of hydrophobic alcohol solutions to reduce the densities of entrapped DNAPLs, converting them to light nonaqueous-phase liquids (LNAPLs). Results of partitioning studies are presented for alcohol-DNAPL systems, in the absence and presence of surfactants. Results indicate that alcohol concentrations near saturation are necessary for conversion of DNAPLs to LNAPLs--particularly for high-density DNAPLs such as trichloroethylene (TCE) and tetrachloroethylene (PCE). Although surfactants can increase the mass of alcohol that can be delivered to a contaminated zone, they appear to change the partitioning equilibrium such that higher alcohol concentrations are required to achieve the same result. Results of this work indicate the importance of minimizing dilution during density modification applications and suggest the concept of using an alcohol macroemulsion flood for density conversion. Implications of the results of this work for remediation system design are discussed.  相似文献   

16.
Once spilled into soils, dense nonaqueous phase liquids (DNAPLs) such as chlorinated solvents migrate deep into the subsurface because of their high density. Their downward migration typically continues until capillary forces balance gravitational forces or until essentially impermeable strata are reached. Efforts to mobilize the DNAPL for remediation purposes risks driving the contaminants deeper, which has spurred research for modifying buoyancy forces in situ. In this paper, a novel means of controlling the density of a DNAPL phase using polyaphrons is presented. Polyaphrons are a class of high internal phase ratio emulsions (HIPREs) that have unusual properties such as indefinite stability and flow properties through porous media. They provide a means of selectively delivering a light organic phase liquid to the vicinity of the DNAPL phase. Upon destabilization of the polyaphron by a polyvalent cation, the light internal phase mixes with the DNAPL to produce a nonaqueous phase of lower density than the original contaminant. The negative buoyancy of the DNAPL can thus be reversed. This approach holds great promise for manipulating DNAPL densities prior to or during remediation treatments.  相似文献   

17.
Field and laboratory studies were carried out to understand the cause for steady increases in (129)I concentrations emanating from radiological basins located on the Savannah River Site, South Carolina. The basins were closed in 1988 by adding limestone and slag and then capping with a low permeability engineered cover. Groundwater (129)I concentrations in a well near the basins in 1993 were 200 pCi L(-1) and are presently between 400 and 1000 pCi L(-1). Iodine speciation in the plume contained wide ranges of iodide, iodate, and organo-iodine concentrations. First-order calculations based on a basin sediment desorption study indicate that the modest increase of 0.7 pH units detected in the study site groundwater over the last 17 years since closure of the basins may be sufficient to produce the observed increased groundwater (129)I concentrations near the basins. Groundwater monitoring of the plume at the basins has shown that the migration of many of the high risk radionuclides originally present at this complex site has been attenuated. However, (129)I continues to leave the source at a rate that may have been exacerbated by the initial remediation efforts. This study underscores the importance of identifying the appropriate in situ stabilization technologies for all source contaminants, especially if their geochemical behaviors differ.  相似文献   

18.
Entrapped and pooled dense nonaqueous-phase liquids (DNAPLs) often persist in aquifers and serve as a long-term source of groundwater contamination. To address the problematic nature of DNAPL remediation, a surfactant-enhanced aquifer remediation (SEAR) technology, density-modified displacement (DMD), has been developed which significantly reduces the risk of downward migration of displaced DNAPLs. The DMD method is designed to accomplish DNAPL density conversion through the introduction of a partitioning alcohol, n-butanol (BuOH), in a predisplacement flood using conventional horizontal flushing schemes. Subsequent displacement and recovery of the resulting LNAPL is achieved by flushing with a low-interfacial tension surfactant solution. The objective of this study was to investigate density conversion of two representative DNAPLs, chlorobenzene (CB) and trichloroethene (TCE). A series of batch experiments was performed to assess changes in NAPL composition, density, and phase behavior as a function of BuOH mole fraction. Experimental results were used to develop contaminant/BuOH/water ternary phase diagrams and to elucidate regions of contrasting NAPL density. UNIQUAC calculations are presented to support measured compositional and phase behavior data. Density conversion of CB and TCE, relative to water, occurred at NAPL BuOH mole fractions of 0.38 and 0.50, respectively. Significant incorporation of water into the organic phase was observed at relatively high BuOH mole fractions and was shown to limit changes in NAPL composition and density. Interfacial tensions between CB-NAPL and TCE-NAPL and a 6% (by wt) BuOH aqueous solution were found to decrease with increasing NAPL BuOH mole fraction, although in both cases the measured values remained above 2.5 dyn/cm. Total trapping number calculations suggest that, in most aquifer formations, density conversion can be achieved without premature NAPL displacement using a 6% (by wt) BuOH aqueous solution.  相似文献   

19.
In the mid-1990s, a groundwater plume of uranium (U) was detected in monitoring wells in the B-BX-BY Waste Management Area at the Hanford Site in Washington. This area has been used since the late 1940s to store high-level radioactive waste and other products of U fuel-rod processing. Using multiple-collector ICP source magnetic sector mass spectrometry, high-precision uranium isotopic analyses were conducted of samples of vadose zone contamination and of groundwater. The isotope ratios 236U/238U, 234U/238U, and 238U/235U are used to distinguish contaminant sources. On the basis of the isotopic data, the source of the groundwater contamination appears to be related to a 1951 overflow event at tank BX-102 that spilled high-level U waste into the vadose zone. The U isotopic variation of the groundwater plume is a result of mixing between contaminant U from this spill and natural background U. Vadose zone U contamination at tank B-110 likely predates the recorded tank leak and can be ruled out as a significant source of groundwater contamination, based on the U isotopic composition. The locus of vadose zone contamination is displaced from the initial locus of groundwater contamination, indicating that lateral migration in the vadose zone was at least 8 times greater than vertical migration. The time evolution of the groundwater plume suggests an average U migration rate of approximately 0.7-0.8 m/day showing slight retardation relative to a groundwater flow of approximately 1 m/day.  相似文献   

20.
Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号