首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A novel polymeric ligand having 2,2′:6′,2″‐terpyridine as pendant group was prepared through a Williamson type etherification approach for the reaction between 4′‐hydroxy‐2,2′: 6′,2″‐terpyridine and the commercially available 4‐chloromethyl polystyrene. The chelating properties of the new polymer toward the divalent metal ions (Cu2+, Zn2+, Ni2+, and Pb2+) in aqueous solutions was studied by a batch equilibration technique as a function of contact time, pH, mass of resin, and concentration of metal ions. The amount of metal‐ion uptake of the polymer was determined by using atomic absorption spectrometry. Results of the study revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Pb2+ and that the metal‐ion uptake follows the order: Pb2+ > Cu2+ > Zn2+ > Ni2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A new polystyrene-supported ethylenediaminediacetic acid resin has been synthesized through a reaction between the amination of the commercially available 4-chloromethyl polystyrene polymer with ethylenediamine and the subsequent carboxymethylation with monobromoacetic acid, using ethylenediamine as spacer. The chelation behavior of this resin toward the divalent metal ions Cu2+, Ni2+, Zn2+, and Pb2+ in aqueous solutions was investigated. Batch equilibration experiments were carried out as a function of contact time, pH, amount of metal-ion, and polymer mass. The amount of metal-ion uptake of the polymer was determined by using atomic absorption spectrometry (AAS). Results of the investigation revealed that the resin exhibited higher capacities and a more pronounced adsorption toward Cu2+ and that the metal-ion uptake follows the order: Cu2+ > Zn2+ > Ni2+ > Pb2+. The adsorption and binding capacity of the resin toward the various metal ions investigated are discussed.  相似文献   

3.
A novel chelating resin was synthesized and characterized by elemental, physico-chemical, GPC, NMR, and SEM analyses. Batch separation was adopted to study the recovery of selected metal ions with respect to the pH, time, concentrations, and electrolytes. From the results, it was observed that the order of the rate of metal ion uptake by the resin was Fe3+ > Cu2+ > Zn2+ > Ni2+ > Co2+ > Pb2+ ions. The adsorption kinetics follows first order, and isotherm models were also found to fit each other. The resin showed three-step thermal degradation, and its kinetic and thermodynamic parameters were also evaluated.  相似文献   

4.
This article reports the synthesis, characterization, and ion exchange properties of a terpolymer. The terpolymer resin salicylic acid‐diaminonaphthalein‐formaldehyde (SDNF) was synthesized by the condensation of salicylic acid and diaminonaphthalein with formaldehyde in the presence of a hydrochloric acid catalyst. Terpolymer resin was characterized by elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance spectroscopy, and UV–Visible spectral studies. The number average molecular weight of the resin was determined by nonaqueous conductometric titration. Chelation ion exchange properties have also been studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+ ions employing a batch equilibrium method. It was employed to study the selectivity of metal ion uptake involving the measurements of distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over wide pH range and in a media of various ionic strengths. The terpolymer showed higher selectivity for Fe3+, Cu2+, and Ni2+ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Fractionation of human plasma on ion exchanger resin was performed on Amberlite IRC‐718 saturated with metal ions. Depletion of human immunoglobulin G was carried out by column chromatography using Tris‐HCl, pH 7 at different concentrations. Results showed that, when Cu+2 and Ni+2 were adsorbed on the resin, one or two fractions of purified IgG were obtained, respectively. Whereas Fe+2 and Zn+2, both retain IgG and serum albumin or serum albumin alone. Furthermore, the Ni+2‐resin retention of serum proteins is too strong that the use of 700 mMTris‐HCl cannot liberate any other proteins than nonadsorbed serum albumin. In conclusion, this investigation demonstrates that immobilized metal ion affinity chromatography with Cu2+, Ni2+, and Fe2+ immobilized on Amberlite IRC‐718 has the potential to be developed as part of a process to purify IgG out of untreated human plasma as acceptable adsorption and elution levels of IgG could be achieved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The chelation behavior of poly(β‐diketone), polymer I, and poly(β‐diketone) oxime, polymer II, toward the divalent metal ions, Cu2+, Zn2+, Ni2+, and Cd2+, and the trivalent lanthanide metal ions, La3+, Nd3+, Sm3+, Gd3+, and Tb3+ was investigated by a batch equilibration technique as a function of contact time, pH, and counter ion. Polymer II exhibited improved chelation characteristics toward lanthanide metal ions in comparison with polymer I and the metal‐ion uptake follows the order Tb3+ ≈ Gd3+ ≈ Sm3+ > Nd3+ ≈ La3+. On the other hand, polymer I showed relatively higher capacity than polymer II, toward the investigated divalent metal ions, where the metal‐ion uptake follows the order Cu2+ > Cd2+ ≈ Zn2+ > Ni2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Hydroxybenzoic acid group has been incorporated onto guar gum by modified Porath's method of functionalization of polysaccharides. The newly synthesized guar gum 4‐hydroxybenzoic acid (GHBA) resin was characterized by Fourier‐transform infrared spectroscopy, elemental analysis, ion‐exchange capacity, column reusability, and physicochemical properties. The distribution coefficient (Kd) values and effect of pH on chelation of these metal ions using batch method were studied. The separations of mixture of Fe2+, Zn2+, Cu2+, Cd2+, and Pb2+ metal ions on GHBA resin on the basis of their distribution coefficient at various pH were also achieved using column chromatography. The effect of experimental parameters such as pH, treatment time, agitation speed, temperature, adsorbent dose, initial metal ion concentration, and flow rate on the removal of metal ions has been also studied. GHBA resin is effective adsorbents for the removal of different toxic metal ions from aqueous solutions and follows the order: Fe2+ > Zn2+ > Cu2+ > Cd2+ > Pb2+. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

8.
《分离科学与技术》2012,47(15):3770-3791
Abstract

The present study reports the potential of mango peel waste (MPW) as an adsorbent material to remove Cu2+, Ni2+, and Zn2+ from constituted metal solutions and genuine electroplating industry wastewater. Heavy metal ions were noted to be efficiently removed from the constituted solution with the selectivity order of Cu2+ > Ni2+ > Zn2+. The adsorption process was pH-dependent, while the maximum adsorption was observed to occur at pH 5 to 6. Adsorption was fast as the equilibrium was established within 60 min. Maximum adsorption of the heavy metal ions at equilibrium was 46.09, 39.75, and 28.21 mg g for Cu2+, Ni2+, and Zn2+, respectively. Adsorption data of all the three metals fit well the Langmuir adsorption isotherm model with 0.99 regression coefficient. Release of alkali and alkaline earth metal cations (Na+, K+, Ca2+, Mg2+) and protons H+ from MPW, during the uptake of Cu2+, Ni2+, and Zn2+, and EDX analysis of MPW, before and after the metal sorption process, revealed that ion exchange was the main mechanism of sorption. FTIR analysis showed that carboxyl and hydroxyl functional groups were involved in the sorption of Cu2+, Ni2+, and Zn2+. MPW was also shown to be highly effective in removing metal ions from the genuine electroplating industry effluent samples as it removed all the three metal ions to the permissible levels of discharge legislated by environment protection agencies. This study indicates that MPW has the potential to effectively remove metal ions from industrial effluents.  相似文献   

9.
A copolymer (4‐HAOF) prepared by condensation of 4‐hydroxyacetophenone and oxamide with formaldehyde in the presence of an acid catalyst proved to be a selective chelating ion‐exchange copolymer for certain metals. Chelating ion‐exchange properties of this copolymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+, and Hg2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal‐ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+ ions than for Co2+, Zn2+, Cd2+, Pb2+, Cu2+, Ni2+, and Hg2+ ions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 787–790, 2003  相似文献   

10.
A novel chelating resin macroporous cross‐linked polystyrene immobilizing 2,5‐dimercapto‐1,3,4‐thiodiazole via a hydrophilic tetraethylene glycol spacer (PS‐TEG‐BMT) is synthesized and the structure is characterized by means of Fourier transform infrared spectroscopy (FTIR), energy dispersive X‐ray microanalysis (EDX), and elementary analysis. Its adsorption capacity for several metal ions such as Hg2+, Ag+, Ni2+, Pb2+, Cd2+, Fe3+, Bi3+, Zn2+, and Cu2+ are investigated. The initial experimental result shows that this resin has higher adsorption selectivity for Hg2+ and Ni2+ than for the other metal ions and the introduction of hydrophilic TEG spacer is beneficial to increase adsorption capacities. The result also shows that the Langmuir model is better than the Freundlich model to describe the isothermal process of PS‐TEG‐BME resin for Hg2+. Five adsorption‐desorption cycles demonstrate that this resin are suitable for reuse without considerable change in adsorption capacity. POLYM. ENG. SCI., 45:1515–1521, 2005. © 2005 Society of Plastics Engineers  相似文献   

11.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

12.
《分离科学与技术》2012,47(4):854-873
Abstract

Metal ion binding with a flowing system to a biosorbent comprised of cultured cell-wall fragment within a polysilicate matrix has been investigated. Solutions containing 0.10 mM Pb2+, Cu2+, Ni2+, Cd2+, and Zn2+ were exposed to the material in combinations of two, three, and five metals while simultaneously monitoring the concentration of all metals in the effluent stream. A relative affinity order of Pb2+ > Cu2+ >> Zn2+ ≈ Cd2+ > Ni2+ was determined when all five metal ions were exposed to the material. Lower-affinity metal ions were exposed to the material sequentially. Both metal-specific and common binding sites were observed for each metal ion. The presence of both binding sites that are common to all metal ions investigated and sites that appear to be unique for each metal ion could significantly impact the utility of single-metal ion studies on the application of such biosorbents for the selective removal of metal ions from natural water.  相似文献   

13.
A novel terpolymer acts as an effective chelating ion exchanger which was synthesized using 2-amino-6-nitro-benzothiazole and semicarbazide with formaldehyde (BSF) by solution condensation technique. Its ion exchange properties was determined against certain metal ions viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Pb2+ using batch equilibrium technique with different electrolyte concentrations, pH ranges and time intervals. The results of batch studies revealed that the separation of the selected metal ions from the aqueous solution by the terpolymer is found to be excellent compared to the available commercial resins and earlier reported resins. The order of metal ion uptake at higher concentrations by the BSF terpolymer at lower pH is Cu2+ > Ni2+ > Fe3+ and at lower concentration at higher pH is Zn2+ > Co2+ > Pb2+. The reusability of the resin was also reported for its effective ion-exchange behaviour for several cycles. The adsorption isotherm model was evaluated and the results are in good agreement with each other. The order of kinetics was also determined and the resin follows pseudo-second-order kinetics. Moreover, the physico-chemical analysis gives strong evidence for the effective metal ion removal compared with the earlier reported and commercial resins. Earlier, the structure and the properties of the synthesized novel chelating resin were clearly elucidated by elemental, FTIR, UV–Vis, 1H & 13C NMR spectra, GPC, SEM and XRD.  相似文献   

14.
Copolymers (8‐HQ5‐SAOF) were synthesized by the condensation of 8‐hydroxyquinoline 5‐sulphonic acid (8‐HQ5‐SA) and oxamide (O) with formaldehyde (F) in the presence of acid catalyst. Four different copolymers were synthesized by using varied molar proportion of the reacting monomers. Copolymer resin composition has been determined on the basis of their elemental analysis and average molecular weights of these resins were determined by conductometric titration in nonaqueous medium. Viscometric measurement in dimethyl sulphoxide (DMSO) has been carried out with a view to ascertain the characteristic functions and constants. Electronic spectra, FTIR, and proton nuclear magnetic resonance spectra were studied to elucidate the structures. The newly synthesized copolymer proved to be a selective chelating ion‐exchange copolymer for certain metals. The chelating ion‐exchange properties of this synthesized copolymer was studied for different metal ions such as Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, and Pb2+. A batch equilibrium method was used in the study of the selectivity of metal ion uptake involving the measurements of the distribution of a given metal ion between the copolymer sample and a solution containing the metal ion only for representative copolymer 8‐HQ5‐SAOF‐I due to economy of space. The study was carried out over a wide pH range, shaking time, and in media of various ionic strengths. The copolymer showed a higher selectivity for Fe3+, Cu2+, and Ni2+ ions than for Co2+, Zn2+, Cd2+, and Pb2+ ions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A novel terpolymer involving 2‐amino‐6‐nitrobenzothiazole and ethylenediamine with formaldehyde was synthesized by a polycondensation technique using glacial acetic acid as a reaction medium. The resulting chelating terpolymer resin was characterized using elemental analysis, physicochemical parameters, and UV‐visible, Fourier transform infrared, 1H NMR and 13C NMR spectral studies. Average molecular weights of the terpolymer were determined using gel permeation chromatography. The surface morphology and the nature of the terpolymer were investigated using scanning electron microscopy and X‐ray diffraction. The chelation ion‐exchange property of the terpolymer was determined against some common metal ions such as Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Pb2+ using the batch equilibrium method. Effects of parameters such as the pH, contact time and various electrolyte concentrations were studied. The reusability of the terpolymer was checked in terms of its effective repeated usage. The results of the Langmuir and Freundlich adsorption isotherm models were best fitted with each other and the reaction kinetics followed pseudo second‐order kinetics. The terpolymer showed good results against Fe3+, Cu2+ and Ni2+ ions compared to those against the other metal ions. © 2014 Society of Chemical Industry  相似文献   

16.
《分离科学与技术》2012,47(13):1925-1939
Chelating terpolymer resin was synthesized and characterized by elemental, physico-chemical, spectral, SEM, XRD, and GPC to elucidate the structure and properties of the terpolymer. Ion-exchange analysis involving evaluation of metal ion uptake in different electrolyte concentrations, pH, and time have been studied to assess the retention capacities of the terpolymer for the metal ions viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Pb2+. The adsorption isotherm was evaluated using the Langmuir and Freundlich isotherms models and the results were found best fitting with each other. The resin can be successfully used in the field of recovery of metal ions from effluents and contaminated water.  相似文献   

17.
Chelating resins have been considered to be suitable materials for the recovery of heavy metals in water treatments. A chelating resin based on modified poly(styrene‐alt‐maleic anhydride) with 2‐aminopyridine was synthesized. This modified resin was further reacted with 1,2‐diaminoethan or 1,3‐diaminopropane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the nanoscale for the recovery of heavy metals from aqueous solutions. The adsorption behavior of Fe2+, Cu2+, Zn2+, and Pb2+ ions were investigated by the synthesis of chelating resins at various pH's. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at acidic pH. Also, the prepared resins were examined for the removal of metal ions from industrial wastewater and were shown to be very efficient at adsorption in the cases of Cu2+, Fe2+, and Pb2+. However; the adsorption of Zn2+ was lower than those of the others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis, and differential scanning calorimetry analysis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Ni2+‐imprinted monolithic column was prepared for the removal of nickel ions from aqueous solutions. N‐Methacryloyl‐L ‐histidine was used as a complexing monomer for Ni2+ ions in the preparation of the Ni2+‐imprinted monolithic column. The Ni2+‐imprinted poly(hydroxyethyl methacrylate‐N‐methacryloyl‐L ‐histidine) (PHEMAH) monolithic column was synthesized by bulk polymerization. The template ion (Ni2+) was removed with a 4‐(2‐pyridylazo) resorcinol (PAR):NH3? NH4Cl solution. The water‐uptake ratio of the PHEMAH–Ni2+ monolith increased compared with PHEMAH because of the formation of nickel‐ion cavities in the polymer structure. The adsorption of Ni2+ ions on both the PHEMAH–Ni2+ and PHEMAH monoliths were studied. The maximum adsorption capacity was 0.211 mg/g for the PHEMAH–Ni2+ monolith. Fe3+, Cu2+, and Zn2+ ions were used as competitive species in the selectivity experiments. The PHEMAH–Ni2+ monolithic column was 268.8, 25.5, and 10.4 times more selective than the PHEMAH monolithic column for the Zn2+, Cu2+, and Fe3+ ions, respectively. The PHEMAH–Ni2+ monolithic column could be used repeatedly without a decrease in the Ni2+ adsorption capacity. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The adsorption of metal ions (Mo6+, Cu2+, Fe2+, and Fe3+) was examined on chemically modified chitosans with a higher fatty acid glycidyl (CGCs), and the adsorption of Cu2+ was examined on ethylenediamine tetraacetic acid dianhydride modified CGCs (EDTA‐CGCs) synthesized by the reaction of the CGCs with ethylenediamine tetraacetic acid dianhydride. The adsorption of phosphate ions onto the resulting substrate/metal‐ion complex was measured. Mo6+ depicted remarkable adsorption toward the CGCs, although all the Mo6+ was desorbed under the adsorption conditions of the phosphate ions. The other metal ions were adsorbed to some extent on CGCs by chelating to the amino group in the substrate, except for CGC‐1, which had the highest degree of substitution (83.9%). Considerable amounts of Fe2+ were adsorbed onto CGCs; however, only a limited number of phosphate ions was adsorbed onto the substrate/metal‐ion complex. As a result, the following adsorbent/metal‐ion complexes gave higher adsorption ability toward phosphate ions: CGC‐4/Cu2+, CGC‐4/Fe3+, and EDTA‐CGC‐3/Fe3+. Where, CGC‐3 is a chemically modified chitosan with the degree of substitution of 26.5 percentage, and CGC‐4 is one with the degree of substitution of 16.0 percentage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Sequestration and removal of heavy metal ions from aqueous solutions pose multiple challenges. Ease of synthesis, high adsorption capacity and ease of regeneration are important considerations in the design of polymeric adsorbent materials developed for this purpose. To meet this objective, a new approach was used to design and synthesize a highly porous polystyrene-based resin (IDASR15) bearing iminodiacetate functional groups in every repeat unit by free radical polymerization with N, N'-methylenebisacrylamide as crosslinker followed by base hydrolysis. The physiochemical chemical properties of the resin were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, equilibrium swelling value (ESV) and thermogravimetric analysis. Metal uptake capacity of IDASR15 towards low concentrations of various toxic heavy metal ions such as Cu2+, Cd2+, Mn2+, Zn2+, Pb2+, Ni2+, Co2+, Co3+, Cr3+, Fe2+, Fe3+, and Al3+ were investigated from their aqueous solution by batch method and found to be 0.943–2.802 mmol/g. The maximum capacity was 2.802 mmol/g obtained for Cu2+ ion at pH 5. The potential for regeneration and reuse has been demonstrated with Cu2+ ion by batch and column methods. The reported results suggest that IDASR15 is a highly efficient and porous complexing agent for commonly found toxic metal ions in aqueous streams with a high ESV of 68.55 g of water/1.0 g of IDASR15. It could also be reused ~99.5% of adsorption efficiency which is very promising and holds significant potential for waste-water treatment applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号