首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在温度为25℃~300℃、应变速率为3×10~(-2)s~(-1)~10~(-4)s~(-1)的条件下,对挤压态的AZ31镁合金沿挤压方向进行了压缩试验,试验研究了加工硬化率随应力的变化关系,以及产生第Ⅱ阶段加工硬化的原因。结果表明,在一定温度及应变速率范围内,加工硬化率随应力增加而增加,当加工硬化率达到峰值时即出现第Ⅱ阶段加工硬化。产生第Ⅱ阶段加工硬化的主要原因是压缩过程中,镁合金组织产生了{1012}拉伸孪晶,随着孪晶数量增加,大量孪晶界会阻碍位错运动,造成加工硬化率升高。  相似文献   

2.
开展了多阶段变形的方法对AZ3 1镁合金超塑性性能提升的研究。结果表明 :第一阶段动态再结晶的最佳条件是温度 3 0 0℃、应变速率 1× 10 - 3s- 1 、此条件下变形量为 5 0 %的时候 ,晶粒尺寸约为 10 μm ;在第二阶段 ,实验温度为40 0℃以及应变速率为 10 - 3s- 1 的变形条件下 ,获得最大延伸率 2 82 .1%。  相似文献   

3.
通过热压缩实验研究AZ31镁合金挤压杆料在变形温度300、400和500℃,应变速率0.1、0.01和0.001s-1条件下的流变行为,基于Arrhenius方程建立流变应力的本构模型,其中激活能Q为132.45 kJ/mol,应变硬化系数n为4.67。依据AZ31镁合金高温变形中的动态再结晶(Dynamic recrystallization,DRX)机理和位错密度演化规律,建立宏观变形-微观组织多尺度耦合的位错密度模型,该模型能够反映热加工过程中的加工硬化、动态回复(Dynamic recovery,DRV)、低角晶界(Low angle grain boundaries,LAGB)和高角晶界(High angle grain boundaries,HAGB)等机制的交互作用。利用ABAQUS的VUSDFLD子程序进行热压缩过程的有限元模拟,获得DRX分数、LAGB和HAGB位错密度的数值模拟结果以及压缩载荷。结果表明:实验载荷与模拟结果基本吻合,本文提出的AZ31镁合金位错密度模型是合理的。  相似文献   

4.
在温度为25~100℃,应变速率为3×10~(-2)~3×10~(-3) s~(-1)范围内,对挤压态AZ31镁合金沿挤压方向进行拉伸试验,研究了第Ⅱ阶段加工硬化产生的条件及机理。结果表明,温度≤75℃,应变速率≥10~(-2) s~(-1),镁合金出现第Ⅱ阶段加工硬化,其加工硬化率为2 400~2 650 MPa。产生第Ⅱ阶段加工硬化的主要原因是,低温、高应变速率拉伸时,屈服应力升高,镁合金发生屈服时的初始位错密度及位错密度累积速率增加。当初始位错密度≥4.62×10~(16)m~(-2)时,镁合金出现第Ⅱ阶段加工硬化。  相似文献   

5.
通过Gleeble 3500热压缩试验机对AZ31镁合金进行热压缩实验,得到温度为300、350、400、450和500℃,应变速率为0.03、0.3、和3 s 1的流变应力曲线。对流变应力曲线进行图形变换求解出不同应变速率下的回复参数r,求得的回复参数的自然对数lnr与温度的倒数1/T成线性相关。结果表明:可以采用修正的Laasraoui-Jonas(L-J)位错密度模型计算AZ31镁合金动态再结晶过程中的位错密度演变;修正的L-J位错密度模型结合元胞自动机(CA)能精确地模拟位错密度动态再结晶过程。  相似文献   

6.
材料流动应力模型是金属成形数值模拟的重要参数之一.基于温度为373~433 K、应变速率为1/300~1/75 s-1、通电电压为60~100 V和通电频率为120~200 Hz的条件,对AZ31镁合金的流动应力变化规律进行了单向拉伸试验研究.通过对Fields-Backofen的本构方程进行修正,引入充电电压和通电频率2个电参数,建立了镁合金的电塑性流动应力模型.结果表明:修正后的模型计算结果能很好地模拟AZ31镁合金的电塑性加工流动应力的变化规律.  相似文献   

7.
通过对AZ31B镁合金挤压棒料线切割(WEDM)的操作实践,试验结果表明影响镁合金线切割面质量的主要因素是钼丝进给速度、线切割电参数,即随钼丝进给速度的增大,切割表面粗糙度增加.当电压为5V,电流为2.2A时,切割面质量最好.  相似文献   

8.
AZ31镁合金等温条件下晶粒长大模型   总被引:1,自引:0,他引:1  
研究加热温度150~450℃和保温时间对AZ31镁合金晶粒尺寸变化的影响。结果表明:当加热温度一定时,晶粒尺寸随保温时间延长而增加;保温时间一定时,当加热温度在150~250℃范围时,晶粒尺寸随温度升高呈现先增加后减小的趋势。当加热温度大于250℃时,晶粒尺寸随加热温度升高而逐渐增大。基于250~450℃时的实验数据,确定了AZ31镁合金晶粒长大激活能,构建了在等温条件下的AZ31镁合金晶粒长大模型。本文构建的模型计算结果与实验结果吻合较好.  相似文献   

9.
采用等压法,通过等温热压缩实验获得了AZ31镁合金变形温度和应变速率分别在473~673 K和0.005~5 s-1条件下对临界断裂应变的影响规律,以及Zener-Hollomon表达式,据此针对AZ31建立了临界断裂应变与变形温度和应变速率间的基本模型;在此基础上,基于镁合金轧制边裂的基本机理,引入CockcroftLatham断裂准则,建立了含有材料变形激活能和基本轧制工艺参数的AZ31镁合金轧制边裂预判模型;并通过相同条件下有限元模拟和热轧试验分别得到沿板宽方向损伤值和边部裂纹深度,以此对所建立的边裂预判模型进行验证,结果显示所建立边裂预判模型的预测值和实测值平均误差为11.3%。  相似文献   

10.
在室温下,挤压态镁合金丝材最大累计面积减少61%,并对所得材料进行退火处理以细化晶粒。在室温下以恒定的应变速率对拉拔态和退火态试样进行拉伸试验,分析每个试样的拉拔面积减少量和平均晶粒尺寸与整个应力—应变曲线的关系。结果表明:冷变形试样具有恒定的弹性模量,但应力明显依赖变形程度。相应的θ—σ曲线(θ代表加工硬化速率,dσ/dε)表现为加工硬化扩展阶段Ⅱ和抑制阶段Ⅳ。再结晶试样随着晶粒的细化屈服应力增高且表现出典型的多晶材料加工硬化阶段:Ⅱ,Ⅲ,Ⅳ和Ⅴ。此外,随着晶粒的细化,由于晶界滑移的作用,第Ⅳ阶段出现下降。在冷拉和再结晶材料中,不同的硬化行为显示出不同的硬化机理。  相似文献   

11.
AZ31镁合金搅拌摩擦点焊   总被引:3,自引:1,他引:2       下载免费PDF全文
研究了搅拌头旋转频率以及停留时间对AZ31镁合金搅拌摩擦点焊接头力学性能的影响.随着旋转频率的增大,不同搅拌针条件下,AZ31搅拌摩擦点焊接头的力学性能均呈现先增大后减小的趋势.随着停留时间的延长,AZ31搅拌摩擦点焊接头的力学性能先增大随后在一定范围内波动.结果表明,结合宽度是影响搅拌摩擦点焊接头力学性能的重要因素,...  相似文献   

12.
AZ31镁合金薄板的焊接   总被引:5,自引:0,他引:5  
AZ31镁合金具有良好的耐蚀性、导热性 ,并且质量轻 ,具有一定的强度 ,在航空、航天、汽车等领域的应用前景较好 ,但目前国内还没有成熟的AZ31镁合金焊接工艺。根据工程要求 ,我们对AZ31型镁合金薄板进行了焊接工艺试验。1 焊接性分析AZ31镁合金化学成分见表 1。其焊接性不良 ,主要表现在 :(1)化学活泼性强 ,焊接时极易产生氧化镁和氮化表 1 AZ3 1镁合金化学成分 (% )材质Mg AlMnZnCaSiCuNiFe杂质总和AZ3 1余量 2 .5~ 3 .5 0 .2~ 1.0 0 .6~ 1.40 .0 40 .10 0 .0 5 0 .0 0 5 0 .0 0 5 0 .3镁造成焊缝夹渣…  相似文献   

13.
综述了AZ31镁合金塑性变形理论研究的最新成果;介绍了近年来AZ31镁合金轧制、挤压和锻造等塑性加工技术的研究进展;展望了AZ31镁合金的发展方向,指出应该加强AZ31镁合金基础理论、成形技术和镁基复合材料的研究。  相似文献   

14.
朱晓智  李学军 《焊接》2011,(8):51-53
研究了AZ31镁合金搅拌摩擦焊的焊缝成形、微观组织和力学性能.试验结果表明,随着旋转速度的增加,焊缝金属的塑性流动得到改善,孔洞消失;随着焊接速度的提高,焊核区晶体的动态再结晶得到抑制,晶粒被细化.最佳的工艺参数:旋转速度1 000 r/min,焊接速度45 mm/min,接头抗拉强度系数可达63.7%.  相似文献   

15.
AZ31镁合金板料等温拉深   总被引:1,自引:0,他引:1  
对AZ31镁合金板料在等温条件下的拉深成型性能进行了研究.结果表明:在精确控制压边力以及采用良好的润滑条件的前提下,AZ31镁合金板料在200℃以下具有良好的拉深成型能力;当成型温度为150℃时.极限拉深比为2.0.当在100℃进行拉深时,单位压边力数值最大;单位压边强度随温度的变化规律与拉深成型过程中材料的软化与硬化作用有关.  相似文献   

16.
采用Gleeble-3500热模拟实验机,对AZ31镁合金在变形温度为523~723 K、应变速率为0.01~10.00 s-1、最大变形程度为60%的条件下进行热压缩实验.结果表明,流变应力随应变的增加而显著增大,到达峰值后逐渐降低并趋于稳态,变形呈明显的动态再结晶特征.变形温度和应变速率对流变应力影响显著,本文采用包含Arrheniues项的本构方程来描述AZ31镁合金的高温变形行为.  相似文献   

17.
在400℃下,分别以压下量10%,15%,20%,25%,30%,35%,40%和45%对初始厚度为7 mm的AZ31镁合金板材进行了轧制过程数值模拟以及实验验证研究,并观察轧制后的显微组织。结果表明,在本实验轧制条件下,当单道次压下量达到20%时,板材边部将有裂纹萌生,并且边部裂纹深度随着压下量的增大而不断增大,由20%时的5.24 mm增加到压下量45%时的14.056 mm;根据数值模拟结果,得到了沿板宽方向的损伤值分布情况,建立了边部裂纹深度预判模型;对于裂纹深度,轧制实验实测值和所建立的裂纹深度预判模型的计算值之间的平均误差为9.23%;SEM观察结果表明,边部裂纹附近的显微组织中含有大量孪晶。  相似文献   

18.
以AZ31镁合金在热压缩过程中微观组织演变为基础,结合元胞自动机模型(CA),建立了镁合金变形过程中再结晶晶粒尺寸模型和动态再结晶百分数模型。通过对铸态AZ31镁合金在不同变形条件下的热压缩实验,推导出镁合金的位错密度模型、临界位错密度模型、形核率模型和晶粒长大模型。结合元胞自动机具体演变规则,建立元胞自动机模型,并利用应力应变曲线及晶粒大小验证元胞自动机的模拟结果,验证该模型的准确性,结合实验数据和JMAK理论,推导出再结晶晶粒尺寸模型和动态再结晶百分数模型。借助DEFORM-3D分析软件得到镁合金在变形过程中,晶粒尺寸分布的变化情况以及动态再结晶百分数分布的变化情况。  相似文献   

19.
20.
AZ31B镁合金薄板TIG焊接   总被引:16,自引:2,他引:16  
郑荣  林然 《焊接》2003,(4):43-44
镁合金具有比重轻、比刚度和比强度高、阻尼减震性好以及易于机械加工等优点 ,在航空航天、汽车、摩托车等领域具有广阔的应用前景。但由于镁合金具有熔点低、线膨胀系数及导热系数高 ,导致镁合金在焊接过程中容易出现氧化燃烧、裂纹以及热影响区过宽等问题 ,难以获得与母材性能相匹配的焊接接头。本文对AZ31B镁合金薄板TIG焊工艺和提高镁合金焊接接头性能的有效途径进行了探索 ,为加快镁合金结构件的广泛应用提供理论基础和技术依据。1 焊接试验1.1 工艺准备本试验采用板厚为 1.6mm的AZ31B镁合金作为焊接材料 ,其化学成分见表 1,对变…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号