首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A redox copolymer, a macromolecular analogue of Bromamine T was prepared and developed as a solid phase oxidizing reagent for sulfides being in trace concentration in aqueous solutions. The resin was prepared starting from Amberlyst 15 by a four‐step transformation of the sulfonic groups to N‐bromosulfonamide. The product containing 3.30 meq active bromine/g showed strong oxidizing properties and was employed in batch as well as in flow processes for removal of sulfides from solutions by their transformation to sulfates. The starting solution contained 64.0 or 320.0 mg S2–/dm3. The effects of various parameters on the reaction course have been studied (mole ratio of reagents, alkalinity of the reaction media, flow rate in the column processes). The solid phase oxidation carried out in a dynamic regime provided to drive the reaction to completion. Thus, sulfide free effluents (< 10 μg S2–/dm3) were obtained in the column processes. The permissible flow rate, close to 10–12 bed volumes/h, was satisfactory. The sulfide oxidation proceeded quickly in aqueous media of various alkalinity, especially in those of strong alkalinity. As the transformation of sulfides to sulfates was accompanied by a drop of the pH value of the reaction medium, it was necessary to maintain it not lower than 6.0. Otherwise, the active bromine content in the resin decreased and the yield of the column process was unsatisfactory. Moreover, in acidic media a considerable part of sulfides transformed to elemental sulfur which contaminated the resin phase and caused turbidity of the effluent. By reacting a stoichiometric amount of reagents in batch regime not only sulfate, but also various intermediate products were found in the solution. The exhausted copolymer contained unsubstituted sulfonamide groups; it could be regenerated and reused repeatedly for the next processes.  相似文献   

2.
A water‐developable negative photoresist based on the photocrosslinking of N‐phenylamide groups was prepared by the copolymerization of 4‐styrenesulfonic acid sodium salts (SSS) with N‐phenylmethacrylamide (copolymer A) or p‐hydroxy‐N‐phenylmethacrylamide (copolymer B), and its properties such as solubility changes, photochemical reaction, and photoresist characteristics were studied. The copolymer containing a relatively higher amount of SSS units was soluble in water. Solubility changes of the copolymers in the various buffer solutions of pH 4 ~ 11 and in water upon irradiation were observed by the measurement of insoluble fraction. The copolymers were soluble in water before irradiation, whereas they became insoluble upon irradiation with the UV light of 254 nm. The photochemical reaction of the copolymer studied by the UV and IR absorption spectroscopies indicated that a photo‐Fries rearrangement was favored for copolymer A, whereas a photocrosslinking reaction was predominate for copolymer B. Resist properties of the copolymers were studied by measurement of the normalized thickness and by development of the micropattern. Negative tone images with a resolution of 1 μm were obtained with these materials that have a sensitivity (D) of ~ 1100 mJ/cm2 with an aqueous developing process.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1172–1180, 2002  相似文献   

3.
Water‐soluble copolymers of N‐acryloyl‐N‐methylpiperazine and N‐acetyl‐α‐aminoacrylic acid were synthesized by radical polymerization. The copolymerization yield ranged between 60 and 97%. The FTIR and NMR spectra demonstrated that the copolymerization occurred. The copolymer composition was determined from 1H‐NMR spectra by comparison of methyl groups from both moieties. The copolymers were richest in AAA units. The metal ion retention properties were investigated by the liquid‐phase polymer‐based retention (LPR) technique at different pH and filtration factors. The affinity for the metal ions depended on the copolymer composition, pH, and filtration factor. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2556–2561, 2002  相似文献   

4.
Thermosensitive and water‐soluble copolymers were prepared through the copolymerization of acryloyloxypropyl phosphinic acid (APPA) and N‐isopropyl acrylamide (NIPAAm). The thermosensitivity of the copolymers and copolymer/metal complexes was studied. The APPA–NIPAAm copolymers with less than 11 mol % APPA moiety had a lower critical solution temperature (LCST) of approximately 45°C, but the APPA–NIPAAm copolymers with greater than 21 mol % APPA moiety had no LCST from 25 to 55°C. The APPA–NIPAAm copolymers had a higher adsorption capacity for Sm3+, Nd3+, and La3+ than for Cu2+, Ni2+ and Co2+. The APPA–NIPAAm (10:90) copolymer/metal (Sm3+, Nd3+, or La3+) complexes became water‐insoluble above 45°C at pH 6–7, but the APPA–NIPAAm (10:90) copolymer/metal (Cu2+,Ni2+, or Co2+) complexes were water‐soluble from 25 to 55°C at pH 6–7. The temperature at which both the APPA–NIPAAm copolymers and the copolymer/metal complexes became water‐insoluble increased as the pH values of the solutions increased. The APPA–NIPAAm copolymers were able to separate metal ions from their mixed solutions when the temperature of the solutions was changed; this was followed by centrifugation of the copolymer/metal complexes after the copolymers were added to the metal solutions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 116–125, 2004  相似文献   

5.
The copolymerization of pyrrole (Py) with N‐ethyl pyrrole, N‐butyl pyrrole, and N‐octyl pyrrole (NOPy) was carried out by electrochemical and chemical oxidation. In the electrochemical method, copolymer thin films with different feed ratios of monomers were synthesized by the cyclic voltammetry method in a lithium perchlorate (LiClO4)/acetonitrile (CH3CN) electrolyte on the surface of a glassy carbon working electrode. The deposition conditions on the glassy carbon, the influence of the molar ratios of the monomers on the formation of the copolymers, and the electroactivity of the copolymers were investigated with cyclic voltammetry. Nanoparticles made of a conjugate of the copolymers with different feed ratios of monomers were prepared by chemical polymerization (conventional and interfacial methods) in the presence of iron(III) chloride hexahydrate (FeCl3·6H2O) as the oxidant. Nanostructural copolymers with higher conductivities were synthesized by simple tuning of the preparation conditions in a two‐phase medium. Fourier transform infrared spectroscopy, scanning electron microscopy, and four‐probe conductivity measurement techniques were applied for the characterization of the obtained copolymers. The conductivity of the obtained copolymer by an interfacial method with chloroform as the organic phase was 20 times higher than the copolymer obtained via an interfacial method with toluene as the organic phase and 700 times higher than the copolymer prepared by the conventional method (for a molar ratio of 70 : 30 Py : NOPy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
This article reports the synthesis of poly(N‐maleoylglycine‐co‐itaconic acid) by radical copolymerization under different feed mole ratios and its properties to remove various metal ions, such as Cu(II), Cr(III), Co(II), Zn(II), Ni(II), Pb(II), Cd(II), and Fe(III), in aqueous phase with the liquid‐phase polymer‐based retention(LPR) technique. The interactions of inorganic ions with the hydrophilic water‐soluble polymer were determined as a function of pH and filtration factor. Metal ion retention was found to strongly depend on the pH. Metal ion retention increased as pH and MG content units in the macromolecular backbone increased. The copolymers were characterized by elemental analysis, FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. Additionally, intrinsic viscosity, molecular weight, and polydispersity have been determined for the copolymers. Copolymer and polymer–metal complex thermal behavior was studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques under nitrogen atmosphere. The thermal decomposition temperatures (TDT) were influenced by the copolymer composition. The copolymers present lower TDT than the polymer–metal complex with the same copolymer composition. All copolymers present a single Tg, indicating the formation of random copolymers. A slight deviation of the Tg for the copolymers and its complexes can be observed. The copolymer Tg is higher than the Tg value for the polymer–metal complexes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
A composite based on organic copolymer and inorganic oxide, polyaniline/poly o‐toluidine/silica (PANI/POT/SiO2), has been synthesized successfully by a simple electrochemical method. The composite film was found to be deposited on a Pt substrate by sweeping the potential between ?0.2 and +1.0 V versus a saturated calomel electrode with a scan rate of 100 mV/s. The polymeric composite film thus obtained was characterized by scanning electron microscopy, infrared spectroscopy, conductance measurement, and cyclic voltammetry techniques. Incorporation of silica in the copolymer results a clear difference in surface morphology compared with the bulk homo‐ and copolymers. Further evidence of silica in the composite was achieved by infrared spectral analysis. Indeed, a chemical analysis of the composite matrix showed a content of as high as 25% SiO2 in the composite thus prepared. Based on the results of cyclic voltammetric analysis, the composite electrode as prepared was found to show good electrochemical stability even at high positive potentials. It also exhibited excellent electroactivity even after incorporation of silica in the matrix. The electroactive composite film was thus examined as electrode modifier to study the redox behavior of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/benzoquinone (H2Q/Q) couples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Graft copolymers of crosslinked poly(N‐isopropyl acrylamide) (PNIPAAm) and homopolyguluronic acid (GG) and homopolymannuronic acid (MM) fractions of alginic acid were synthesized. MM and GG block fractions were obtained by partial acid hydrolysis of the alkaline extract from the brown seaweed Macrocystis pyrifera. The conjugation of these block fractions with the synthetic polymer was achieved by amidation with crosslinked PNIPAAm functionalized with an amino group at the end of the polymer chain. The structure of conjugates was determined by Fourier transform infrared and NMR spectroscopy. Atomic force microscopy of the graft copolymer GG‐g‐PNIPAAm showed a regular porous pattern, whereas the MM‐g‐PNIPAAm graft copolymer showed a regular netlike structure. Aqueous solutions of the synthesized graft copolymers afforded hydrogels by stirring with 0.1M CaCl2. The hydrogels showed a well‐defined stimulus–response to temperature and pH. The swelling, thermal, and pH characterizations demonstrated the superior properties of the GG‐g‐PNIPAAm hydrogel over the MM‐g‐PNIPAAm hydrogel. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42398.  相似文献   

9.
SO2 gas sorption properties were examined for poly(styrene‐co‐chloromethyl styrene) functionalized with N,N‐dimethyl‐1,3‐propanediamine (DMPDA). The DMPDA‐functional copolymers were prepared under various reaction conditions. Two types of SO2 sorption behaviors were observed for these DMPDA‐functional copolymers: SO2 sorption capacity was very high irrespective of slow sorption/desorption rates (type I), and the sorption/desorption rates were very fast while SO2 sorption capacity was small (type II). Fourier transform infrared analysis and dielectric loss measurement revealed that the type II sorption behavior was obtained for the highly crosslinked DMPDA‐functional copolymers. The degree of crosslinking was affected by both the solvent used to react DMPDA with the copolymer and the percent conversion of the chloromethyl styrene group. It was confirmed that DMPDA‐functional copolymers having a highly crosslinked structure are suitable materials in quartz crystal microbalance (QCM)‐type polymeric SO2 gas sensors. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2982–2987, 2003  相似文献   

10.
Novel copolymers consisting of poly(N‐isopropylaminoethyl‐co‐6‐hydroxyhexyl aspartamide) and poly (N‐isopropylaminoethyl‐co‐hexyl aspartamide) were prepared from polysuccinimide, which was the thermal polycondensation product of L ‐aspartic acid, via a ring‐opening reaction with 6‐amino‐L ‐hexanol (AH) or hexylamine (HA) and N‐isopropylethylenediamine at different ratios. The copolymers, containing 75–90 mol % of AH and 35–45 mol % of HA, produced thermoresponsive polymers through their lower critical solution temperatures (LCSTs) in aqueous solution. We could control the LCST could be controlled by modifying the hydrophobic–hydrophilic balance by changing the content of AH or HA. The pH dependencies of the LCST were opposite in these two different copolymer systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Graft copolymers of sodium carboxymethylcellulose with N‐vinyl‐2‐pyrrolidone were prepared in aqueous solutions with azobisisobutyronitrile as the initiator. The graft copolymers [sodium carboxymethylcellulose‐g‐poly(N‐vinyl‐2‐pyrrolidone)] were characterized with Fourier transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The grafting parameters, including the graft yield of the graft copolymer and the grafting efficiency of the reaction, were evaluated comparatively. The effects of reaction variables such as the time, temperature, and monomer and initiator concentrations on these parameters were studied. The graft yield and grafting efficiency increased and then decreased with increasing concentrations of N‐vinyl‐2‐pyrrolidone and azobisisobutyronitrile and increasing polymerization temperatures. The optimum temperature and polymerization time were 70°C and 4.30 h, respectively. Further changes in the properties of grafted sodium carboxymethylcellulose, such as the intrinsic viscosity, were determined. The overall activation energy for the grafting was also calculated to be 10.5 kcal/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 936–943, 2007  相似文献   

12.
Copolymeric hydrogels of poly(acrylamide‐co‐monomethyl itaconate) (A/MMI) crosslinked with N,N′‐methylenbisacrylamide (NBA) were synthesized as devices for the controlled release of bupivacaine (Bp). Two compositions of the copolymer, 60A/40MMI and 75A/25MMI, were studied. A local anesthetic was included in the feed mixture of polymerization (2–8 mg Bp/tablet) and by immersion of the copolymeric tablets in an aqueous solution of the drug. A very large amount of Bp (36–38 mg Bp/tablet) was included in the gels by sorption due to interactions between the drug and the side groups of the hydrogels. Swelling and drug release were in accordance with the second Fick's law at the first stages of the processes. The swelling behavior of these copolymers depended on the pH of the medium. The equilibrium swelling degree (W) was larger at pH 7.5 (W ≈ 90 wt %) than at pH 1.5 (W ≈ 52–64 wt %) due to the ionization of the side groups of the copolymer. Release of the drug also depended on the pH of the swelling medium; at pH 7.5, about 60% of the included drug was released, and at pH 1.5, about 80% was released. Bp release was controlled by the comonomer composition of the gels, their drug‐load, and the pH of the swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 327–334, 2002  相似文献   

13.
pH and thermo‐responsive graft copolymers are reported where thermo‐responsive poly(N‐isopropylacrylamide) [poly(NIPAAm), poly A ], poly(N‐isopropylacrylamide‐co‐2‐(diethylamino) ethyl methacrylate) [poly(NIPAAm‐co‐DEA), poly B ], and poly(N‐isopropylacrylamide‐co‐methacrylic acid) [poly(NIPAAm‐co‐MAA), poly C ] have been installed to benzaldehyde grafted polyethylene glycol (PEG) back bone following introducing a pH responsive benzoic‐imine bond. All the prepared graft copolymers for PEG‐g‐poly(NIPAAm) [ P‐N1 ], PEG‐g‐poly(NIPAAm‐co‐DEA) [ P‐N2 ], and PEG‐g‐poly(NIPAAm‐co‐MAA) [ P‐N3 ] were characterized by 1H‐NMR to assure the successful synthesis of the expected polymers. Molecular weight of all synthesized polymers was evaluated following gel permeation chromatography. The lower critical solution temperature of graft copolymers varied significantly when grafted to benzaldehyde containing PEG and after further functionalization of copolymer based poly(NIPAAm). The contact angle experiment showed the changes in hydrophilic/hydrophobic behavior when the polymers were exposed to different pH and temperature. Particle size measurement investigation by dynamic light scattering was performed to rectify thermo and pH responsiveness of all prepared polymers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Poly(N‐isopropylacrylamide) copolymers (PNIPAMs) containing pendent perfluoroalkyl (RF) or dodecyl groups have been synthesized by copolymerization of NIPAM with small amounts of RR‐acrylates or ‐methacrylates containing a sulfonamido moiety between the acrylate and RF groups or with dodecyl acrylate. Evidence for strong intermolecular hydrophobic association of the fluorocarbon groups is provided by large viscosity increases with copolymer concentration and upon addition of NaCl and surfactants. These interactions appear to be much stronger than that of the corresponding copolymers of poly(N,N‐dimethylacrylamide) with similar comonomer contents. Hydrophobic association between the RF groups is found to be much stronger than that of the corresponding dodecyl groups. The viscosity of some of the copolymer solutions, particularly in the presence of perfluorocarbon surfactants, was unusually temperature sensitive, decreasing by a factor of at least 1000 upon increasing the temperature from 10 to 20 °C. This large decrease is most probably related to the collapse of the copolymer coils near the lower critical solution temperature. This is in sharp contrast to the corresponding polyacrylamide or poly(N,N‐dimethylacrylamide) RF‐acrylate copolymers that show viscosity increases with increasing temperature in the 40–60 °C range. The NIPIAM copolymers were also found to be different from the acrylamide or N,N‐dimethylacrylamide perfluorocarbon acrylate copolymers in that they were found to be Newtonian at a low RF content but dilatant at a higher comonomer content. © 2000 Society of Chemical Industry  相似文献   

15.
Copolymers of sodium o‐methacryloylaminophenylarsonate (o‐MAPHA‐Na) 1 and p‐methacrylolylaminophenylarsonate (p‐MAPHA‐Na) 2 with sodium acrylate (AA‐Na) 3 , sodium methacrylate (AM‐Na) 4 and acrylamide (AAD) 5 were prepared by free radical polymerization in aqueous media at 70°C using potassium persulfate (K2S2O8) as the initiator. The total monomer concentration was carried out at 0.5M and the feed ratio ( M1 : M2 ) was varied from 10 : 90 to 90 : 10 mol%. The kinetic study was carried out by dilatometric method. The copolymer compositions were calculated by arsenic content in the copolymers. The As content (ppm) was determined by atomic absorption spectrometry (AAS). The reactivity ratios (r1, r2) were estimated by the Kelen‐Tüdös linearization method as well as error‐in‐variables method using the computer program RREVM®. In all cases, r1 < 1 and r2 > 1, indicating a tendency to form random copolymers. The values suggest that the copolymers contain a larger proportion of comonomer (i.e., AA‐Na, AM‐Na, or AAD). Weight‐average molar masses (M w) of copolymers were determined by multi‐angle light scattering. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
A series of copolymers PDAMs were synthesized with varying monomer ratio of acrylamide (AM) and N,N‐dimethylaminoethyl methacrylate (DMAEMA). The resulting copolymer solution shows an interesting property of viscosity‐response which is CO2‐triggered and N2‐enabled. Tertiary amine groups of PDAMs experience a reversible transition between hydrophobic and hydrophilic state upon CO2 addition and its removal, which induced different rheological behavior. A combination of zeta‐potential, laser particle‐size analysis, and electrical conductivity analysis indicated that, when the monomer mole ratio of DMAEMA and AM is less than or equal to 3 : 7, the hydrophobic association structure between the copolymer molecules was destroyed by the leading of CO2 and caused a viscosity decrease in its solution. On the contrary, when the monomer mole ratio of DMAEMA and AM is more than 3 : 7, a more extended conformation due to the protonated tertiary amine groups is formed and the enhanced repulsive interactions among the copolymer molecule results in a rise of its solution viscosity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40872.  相似文献   

17.
A series of sulfonated poly(arylene ether nitrile) copolymers containing carboxyl groups were synthesized via a nucleophilic aromatic substitution reaction from phenolphthalein, hydroquinone sulfonic acid potassium salt, and 2,6‐difluorobenzonitrile in N‐methyl pyrrolidone (NMP) with K2CO3 as a catalyst. The synthesized copolymers had good solubility in common polar organic solvents and could be easily processed into membranes from solutions of dimethyl sulfoxide, NMP, N,N′‐dimethyl acetylamide, and dimethylformamide. Typical membranes in acid form were gained, and the chemical structures of these membranes were characterized by Fourier transform infrared analysis. The thermal properties, fluorescence properties, water uptake, ion‐exchange capacity, and proton conductivities of these copolymers were also investigated. The results indicate that they had high glass‐transition temperatures in the range 151–187°C and good thermal stability, with the 10 wt% loss temperatures ranging from 330 to 351°C under nitrogen. The copolymers showed characteristic unimodal ultraviolet–visible (UV–vis) absorption and fluorescence emission, and the UV–vis absorption, fluorescence excitation, and emission peaks of the copolymers were obvious. Moreover, the copolymer membranes showed good water uptake and proton conductivities at room temperature and 55% relative humidity because of the introduction of both sulfonic acid groups and carboxyl groups into the copolymers, whose contents were in ranges 18.45–67.86 and 3.4 × 10?4 to 3.0 × 10?3 s/cm, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40213.  相似文献   

18.
The effect of composition of graft chains of four types cellulose graft copolymers on the competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solution was investigated. The copolymers used were (1) cellulose‐g‐polyacrylic acid (cellulose‐g‐pAA) with grafting percentages of 7, 18, and 30%; (2) cellulose‐g‐p(AA–NMBA) prepared by grafting of AA onto cellulose in the presence of crosslinking agent of N,N′‐methylene bisacrylamide (NMBA); (3) cellulose‐g‐p(AA–AASO3H) prepared by grafting of a monomer mixture of acrylic acid (AA) and 2‐acrylamido‐2‐methyl propane sulphonic acid (AASO3H) containing 10% (in mole) AASO3H; and (4) cellulose‐g‐pAASO3H obtained by grafting of AASO3H onto cellulose. The concentrations of ions which were kept constant at 4 mmol/L in an aqueous solution of pH 4.5 were equal. Metal ion removal capacities and removal percentages of the copolymers was determined. Metal ion removal capacity of cellulose‐g‐pAA did not change with the increase in grafting percentages of the copolymer and determined to be 0.27 mmol metal ion/gcopolymer. Although the metal removal rate of cellulose‐g‐p(AA–NMBA) copolymer was lower than that of cellulose‐g‐pAA, removal capacities of both copolymers were the same which was equal to 0.24 mmol metal ion/gcopolymer. Cellulose did not remove any ion under the same conditions. In addition, cellulose‐g‐pAASO3H removed practically no ion from the aqueous solution (0.02 mmol metal ion/gcopolymer). The presence of AASO3H in the graft chains of cellulose‐g‐p(AA–AASO3H) created a synergistic effect with respect to metal removal and led to a slight increase in metal ion adsorption capability in comparison to that of cellulose‐g‐pAA. All types of cellulose copolymers were found to be selective for the removal of Pb2+ over Cu2+ and Cd2+. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2034–2039, 2003  相似文献   

19.
The monomers N‐allyl camphor sulfonamide (CSAP) and N,N‐diallyl camphor sulfonamide (CSDAP) were copolymerized with acrylamide (AM), acrylic acid (AA) for EOR, respectively. The effect of the synthesis conditions on apparent viscosity was investigated, and the copolymers were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), environmental scanning electron microscope (ESEM), and thermogravimetric analysis (TGA). Increasing mass ratio of diallyl CSDAP could lead to the water‐insoluble of copolymer, and competition of free radicals could make polymerization of AM/AA/CSDAP more difficult than AM/AA/CSAP. The thickening function and temperature resistance of two copolymers were remarkably improved in comparison with similar molecular weight partially hydrolyzed polyacrylamide (HPAM). In addition, the pronounced temperature resistance of the copolymers has been also demonstrated by temperature resistance test. It has also found that copolymers AM/AA/CSAP and AM/AA/CSDAP brine solutions could obtain significant enhanced oil recovery at 70°C suggesting their potential being applied in chemical enhanced oil recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41238.  相似文献   

20.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号