首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
(Zn1 − xNix)Ta2O6 ceramics have been prepared via conventional mixed oxide route. The phase evolution and microstructure of (Zn1 − xNix)Ta2O6 ceramics were investigated. The Raman spectroscopy was used to confirm the minor phase formation. The bond valence of (Zn1 − xNix)Ta2O6 ceramics was calculated to evaluate the relation between bond valence and the microwave properties. The effects of Ni2+ ionic substitution on microwave dielectric properties of (Zn1 − xNix)Ta2O6 ceramics were discussed. The dielectric constant and temperature coefficient of resonant frequency of (Zn1 − xNix)Ta2O6 ceramics were depended upon phase composition and bond valence. The Q × ? was not significantly different for all levels of Ni2+ ionic concentration.  相似文献   

2.
ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) ceramics were prepared by conventional mixed-oxide method combined with a chemical processing. Fine particle powders were prepared by chemical processing to activate the formation of compound and to improve the sinterability. One wt.% of V2O5 and B2O3 with the mole ratios of 3:1 were used to lower the sintering temperature of ceramics. The effect of Sn content on phase structure and dielectric properties were investigated. The results show that the substituting Sn for Ti accelerates the hexagonal phase transition to cubic phase, and an inverse spinel structure Zn2(Ti1−xSnx)O4 solid solution forms. The best dielectric properties obtained at x = 0.12. The ZnO-0.88TiO2-0.12SnO2 ceramics sintered at 900 °C exhibit a good dielectric property: ?r = 29 and tan δ = 9.86 × 10−5. Due to their good dielectric properties, low firing characteristics, ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) can serve as the promising microwave dielectric capacitor.  相似文献   

3.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

4.
The (0 0 l) textured BaBi2(Nb1 − xVx)2O9 (where x = 0, 0.03, 0.07, 0.1 and 0.13) ceramics were fabricated via the conventional melt-quenching technique followed by high temperature heat-treatment (800-1000 °C range). The influence of vanadium content and sintering temperature on the texture development and relative density were investigated. The samples corresponding to the composition x = 0.1 sintered at 1000 °C for 10 h exhibited the maximum orientation of about 67%. The Scanning electron microscopic studies revealed the presence of platy grains having the a-b planes perpendicular the pressing axis. The dielectric constant and the pyroelectric co-efficient values in the direction perpendicular to the pressing axis were higher. The anisotropy in the dielectric constant is about 100 (at 100 kHz) at the dielectric maximum temperature and anisotropy in the pyroelectric co-efficient is about 50 μC cm−2 °C−1 in the vicinity of pyroelectric anomaly for the sample corresponding to the composition x = 0.1 sintered at 1000 °C. Higher values of the dielectric loss and electrical conductivity were observed in the direction perpendicular to the pressing axis which is attributed to the high oxygen ion conduction in the a-b planes.  相似文献   

5.
This paper reports the structural and dielectric properties of Ba(Ti1 − xZrx)O3 (x = 0-0.3) ceramics. Single-phase solid solutions of the samples were determined by X-ray diffraction. Microscopic observation by scanning electron microscope revealed dense, single-phase microstructure with large grains (20-60 μm). The evolution of dielectric behavior from a sharp ferroelectric peak (for x ≤ 0.08) to a round dielectric peak (for 0.15 ≤ x ≤ 0.25) with pinched phase transitions and successively to a ferroelectric relaxor (for x = 0.3) was observed with increasing Zr concentration. Compared with pure BaTiO3, broaden dielectric peaks with high dielectric constant of 25,000-40,000 and reasonably low loss (tanδ: 0.01-0.06) in the Ba(Ti1 − xZrx)O3 ceramics have been observed, indicating great application potential as a dielectric material.  相似文献   

6.
A bismuth and lead oxide based perovskite ternary solid solution xBi(Zn1/2Ti1/2)O3 − yPbZrO3 − zPbTiO3 (xBZT − yPZ − zPT) was investigated as an attempt to develop a high TC ferroelectric material for piezoelectric sensor and actuator applications. A morphotropic phase boundary (MPB) between rhombohedral and tetragonal phases was determined through an XRD study on a pseudobinary line 0.1BZT − 0.9[xPT − (1 − x)PZ] for composition 0.1Bi(Zn1/2Ti1/2)O3 − 0.5PbZrO3 − 0.4PbTiO3. Enhanced piezoelectric and ferroelectric activities were observed for MPB composition with dielectric constant εr′ ~ 23,000 at Curie temperature (TC) ≈ 320 °C, remanent polarization (Pr) = 35 μC/cm2, piezoelectric coefficient (d33) = 300 pC/N, unipolar strain = 0.15%, and electromechanical coupling coefficient (kP) = 0.45.  相似文献   

7.
The microstructures and the microwave dielectric properties of the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system were investigated. In order to achieve a temperature-stable material, CaTiO3 (τf ∼ 800 ppm/°C) was chosen as a τf compensator and added to Mg4Nb2O9 (τf ∼ −70 ppm/°C) to form a two phase system. It was confirmed by the XRD and EDX analysis. By appropriately adjusting the x-value in the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system, near-zero τf value can be achieved. A new microwave dielectric material, 0.5Mg4Nb2O9-0.5CaTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ?r ∼ 24.8, a Q × f value ∼82,000 GHz (measured at 9.1 GHz) and a τf value ∼−0.3 ppm/°C.  相似文献   

8.
(1 − x)Ca2/5Sm2/5TiO3-xLi1/2Nd1/2TiO3 (CSLNT) ceramic powder was prepared by a liquid mixing method using ethylenediaminetetraacetic acid (EDTA) as the chelating agent. TG, DTA, XRD and TEM characterized the precursors and derived oxide powders. When x = 0.3, perovskite CSLNT was synthesized at 1000 °C for 3 h in air. The CSLNT (x = 0.3) ceramics sintered at 1200 °C for 3 h show excellent microwave dielectric properties of ?r = 99, Qf = 6200 GHz and τf = 9 × 10−6 °C−1.  相似文献   

9.
(1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 (x = 0, 0.002, 0.004, 0.006, 0.008, 0.01) lead-free piezoelectric ceramics were prepared by the conventional ceramic processing. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary between the orthorhombic and tetragonal phases was identified in the composition range of 0.004 < x < 0.006. The ceramics near the morphotropic phase boundary exhibit a strong compositional dependence and enhanced piezoelectric properties. The ceramics with 0.6 mol.% BiFeO3 exhibit good electrical properties (d33 ∼ 246 pC/N, kp ∼ 43%, Tc ∼ 285 °C, ?r ∼ 1871, and tan δ ∼ 1.96%). These results show that the (1 − x) (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 − x BiFeO3 ceramic is a promising lead-free piezoelectric material for applications in different devices.  相似文献   

10.
Ceramics in the system (1 − x)(Mg0.95Zn0.05)TiO3-x(Na0.5Nd0.5)TiO3 were prepared by the conventional mixed oxide route. It shows a two-phase system of an ilmenite structured (Mg0.95Zn0.05)TiO3 and a perovskite structured (Na0.5Nd0.5)TiO3, which were confirmed by XRD and EDX. In addition, (Mg0.95Zn0.05)Ti2O5 was identified as a second phase. It was also responsible for a rapid drop in the Q × f value. The temperature coefficient of resonant frequency was a function of compositional ratio. Specimen with x = 0.16 possessed an excellent combination of microwave dielectric properties: εr ~ 24.27, Q × f ~ 82,000 GHz (at 9 GHz) and τf ~ 0 ppm/°C.  相似文献   

11.
Features of phase coexistence in solid solutions of (1 − x)Pb(Fe1/2Nb1/2)O3 − xPbTiO3 with the perovskite-type structure are studied at 0.05 ≤ x ≤ 0.08. The role of elastic matching of the tetragonal P4mm and monoclinic Cm phases of the ferroelectric nature is considered near the morphotropic phase boundary. Model concepts on the stress relief in heterophase structures are developed and applied to interpret the phase content in (1 − x)Pb(Fe1/2Nb1/2)O3 − xPbTiO3. Good agreement between the calculated and experimental dependences of the volume fraction of the tetragonal phase on x is observed. It is shown that the studied phase coexistence under conditions for the complete stress relief can take place at elastic matching of the single-domain monoclinic phase and the tetragonal phase split into two types of 90° domains.  相似文献   

12.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

13.
The microstructures and the microwave dielectric properties of the x(Mg0.95Zn0.05)TiO3-(1 − x) Ca0.8Sm0.4/3TiO3 ceramic system were investigated. In order to achieve a temperature-stable material, we studied a method of combining a positive temperature coefficient material with a negative one. Ca0.8Sm0.4/3TiO3 has dielectric properties of dielectric constant εr ~ 120, Q × f value ~ 13,800 GHz and a large positive τf value ~ 400 ppm/°C. (Mg0.95Zn0.05)TiO3 possesses high dielectric constant (εr ~ 16.21), high quality factor (Q × f value ~ 210,000 at 9 GHz) and negative τf value (− 59 ppm/°C). Sintering at 1300 °C with x = 0.9, 0.9(Mg0.95Zn0.05Ti)O3 − 0.1 Ca0.8Sm0.4/3TiO3 has a dielectric constant (εr) of 22.7, a Q × f value of 124,000 GHz and a temperature coefficient of resonant frequency (τf) of − 6.3 ppm/°C.  相似文献   

14.
Spinel ferrite Cox(Cu0.5Zn0.5)1−xFe2O4 over a compositional range 0 < x < 1 was prepared using a simple hydrothermal method. Particle sizes could be varied from 14 to 25 nm by changing the x value. X-ray diffraction results confirmed that all the as-prepared nanoparticles revealed typical spinel structure and transmission electron microscopy images showed that the particle size of the samples increased with increasing x value. The magnetic properties of the as-prepared Cox(Cu0.5Zn0.5)1−xFe2O4 nanoparticles have been systematically examined. The maximum saturation magnetization existed at the highest Co content (x = 1). The electromagnetic properties of all the samples have been measured by an Agilent network analyzer and the results showed that Co0.1(Cu0.5Zn0.5)0.9Fe2O4 possessed the best microwave absorbing properties.  相似文献   

15.
Lead-free (K0.5Na0.5)(Nb1−xTax)O3 ceramics with x = 0.00-0.30 were prepared by the solid-state reaction technique. The effects of Ta on microstructure, crystallographic structure, phase transition and piezoelectric properties have been investigated. It has been shown that the substitution of Ta decreases Curie temperature TC and orthorhombic-tetragonal phase transition temperature TO-T, while increasing the rhombohedral-orthorhombic phase transition temperature TR-O. In addition, piezoelectric activity is enhanced with the increase of Ta content. The ceramics with x = 0.30 have the high value of piezoelectric coefficient d33 = 205 pC/N. Moreover, kp shows little temperature dependence between −75° C and 75 °C, and d33 exhibits very good thermal stability over the range from −196 °C to 75 °C in the aging test.  相似文献   

16.
The effects of B2O3 addition on the microwave dielectric properties and the microstructures of (1−x)LaAlO3-xSrTiO3 ceramics prepared by conventional solid-state routes have been investigated. Doping with 0.25 wt.% B2O3 can effectively promote the densification and the microwave dielectric properties of (1−x)LaAlO3-xSrTiO3 ceramics. It is found that LaAlO3-SrTiO3 ceramics can be sintered at 1400°C due to the liquid phase effect of a B2O3 addition observed by scanning electronic microscopy (SEM). The dielectric constant as well as the Q×f value decreases with increasing B2O3 content. At 1460°C, 0.46LaAlO3-0.54SrTiO3 ceramics with 0.25 wt.% B2O3 addition possesses a dielectric constant (εr) of 35, a Q×f value of 38,000 (at 7 GHz) and a temperature coefficients of resonant frequency (τf) of −1 ppm/°C.  相似文献   

17.
The microwave dielectric properties of (1 − x)BaTi4O9-xBaZn2Ti4O11 ceramics were investigated by solid-state reaction technique for obtaining high-Q dielectric ceramics in BaO-ZnO-TiO2 system. And they were strongly determined by the chemical composition. As x was increased from 0.05 to 0.50, BaZn2Ti4O11 phase formed more and more. Therefore, the εr decreased from 37.3 to 32.8 and the Q × f values first raised from 45,300 GHz to 60,600 GHz (x = 0.30) and then started to decline to 58,700 GHz (x = 0.40), and the τf values varied gradually from 12 ppm/°C to − 13 ppm/°C. 0.7BaTi4O9-0.3BaZn2Ti4O11 ceramics sintered at 1240 °C for 3 h had excellent comprehensive microwave dielectric properties: εr = 34.2, Q × f = 60,600 GHz and τf = − 2 ppm/°C.  相似文献   

18.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

19.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

20.
Mass density, glass transition temperature and ionic conductivity are measured in xLi2O-(40 − x)Na2O-50B2O3-10Bi2O3 and xK2O-(40 − x)Na2O-50B2O3-10Bi2O3 glass systems with 0 ≤ x ≤ 40 mol%. The strength of the mixed alkali effect in Tg, dc electrical conductivity and activation energy has been determined in each glass system. The magnitudes of the mixed alkali effect in Tg for the mixed Li/Na glass system are much smaller than those in the mixed K/Na glasses. The impact of mixed alkali effect on dc electrical conductivity in mixed Li/Na glass system is more pronounced than in the K/Na glass system. The results are explained based on dynamic structure model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号