首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oxy-apatites are one of the most promising oxide ion conducting electrolytes for intermediate-temperature solid oxide fuel cells, those operating close to 950 K. La9.33(SiO4)6O2 has the simplest stoichiometry among the oxy-apatite family of compounds, and the range of oxide ion conductivity reported for dense ceramic pellets is very high, almost two orders of magnitude at a given temperature. The spread in conductivity values including porous pellets is obviously larger. Here, we show that dense pellets of La9.33(SiO4)6O2 ceramics prepared by three different methods, conventional, spark plasma, and reaction sintering (RS), have different bulk conductivities. Bulk activation energies are equal for all the samples studied. Furthermore, the grain boundary conductivity cannot be described by the simple brick-layer model. These experimental findings suggest segregation at the grain boundary region, with slightly different compositions for different sintering conditions, likely leaving the grain interior with a compositional gradient. A two-step RS led to dense pellets with the highest bulk and grain boundary oxide ion conductivities.  相似文献   

2.
The formation of zircon (ZrSiO4) via sintering of milled SiO2 and ZrO2 powders was studied, and the effects of slurry vs dry milling, sintering time, and particle size on zircon yield were examined. It was found that very high zircon yields could be obtained via slurry milling, cold pressing, and sintering of the oxide precursors. The controlling factor in determining zircon yield was found to be the particle size of the SiO2 and ZrO2 powders. Zircon yield as a function of sintering time was examined, and found to be similar to previous studies in which sol-gel precursors seeded with zircon were used. SEM studies reveal a homogeneous product with particle sizes on the order of 1–5 µm. It was found that complete reaction to zircon can be achieved from a once-through milling, pressing, and sintering process of SiO2-ZrO2 powders.  相似文献   

3.
A study is presented on sintering of the mixed oxide (CeO2)0.82(GdO1.5)0.18 where the density of the green samples, the density of the sintered samples, and the ionic conductivity of O2- ions in the sintered samples were measured. The dependence of these three parameters on the method of preparation of the powder and on the pressure in pressing of the green samples was determined. The pressures used varied from 25 to 1200 MPa. The different preparation methods used resulted in powders of different degree of mixing of the two oxides, which then determined the compositional homogeneity of the samples when sintered. An apparent relation exists between compositional homogeneity and ionic conductivity as well as density. However, when high pressures (∼1000 MPa) were applied, densities up to 98 % of theoretical value were obtained. A temperature dependence of the activation energy in seemingly homogeneous samples is attributed to a higher dopant concentration in the grain boundary than in the grain bulk.  相似文献   

4.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

5.
BN-toughened oxide matrix composites were formed by the in situ reaction of B2O3 with Si3N4 and/or AlN. A lowtemperature transient liquid phase aids densification at <1000°C, and the process tends to produce an intrinsically homogeneous microstructure. Mechanical properties and microstructure of the composites formed in situ were compared to those of composites prepared by conventional means from oxide and BN powders. Fracture toughness and flexural strength of the nearly isotropic in situ formed composites ranged from 2.82 to 3.66 MPa · m1/2 and 130 to 320 MPa, respectively, with Young's moduli of 100 to 110 GPa. Densities achieved ranged from 90% to 97% of estimated theoretical densities. The strength and toughness values are intermediate to the extreme values for the anisotropic composites formed by hot-pressing mixed powders.  相似文献   

6.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

7.
Partially stabilized zirconia (PSZ) powders were fully densified by microwave heating using a domestic microwave oven. Pressed powder compacts of PSZ were sandwiched between two ZnO–MnO2–Al2O3 ceramic plates and put into the microwave oven. In the first step, PSZ green pellets were heated by self-heating of ZnO–MnO2–Al2O3 ceramics (1000°C). In the second step, the heated PSZ pellets absorbed microwave energy and self-heated up to a higher temperature (1250°C), leading to densification. The density of PSZ obtained by heating in the microwave oven for 16 min was 5.7 g/cm3, which was approximately equal to the density of bodies sintered at 1300°C for 4 h or 1400°C for 16 min by the conventional method. The average grain size of the sample obtained by this method was larger than the average grain size of samples sintered by the conventional method with a similar heating process.  相似文献   

8.
Chemical coprecipitation was used to produce ultrafine and easily sinterable MgO-stabilized and (MgO, Y2O3) stabilized ZrO2 powders. The sintering behavior is very sensitive to post-precipitation washing because "hard" agglomerates form when the precipitated gels are washed with water, whereas "soft" agglomerates form when they are washed with ethanol. The soft agglomerates pack uniformly, resulting in homogeneous shrinkage of powder compacts to near-theoretical density. The hard agglomerates result in compacts which have regions of localized densification and a signifiint fraction of residual porosity.  相似文献   

9.
A two-step processing technique was used to make dense, homogeneous intermetallics in the Mo(Al,Si)2—MoSi2 system. A variation of self-propagating high-temperature synthesis was used, in which starting pellets were nucleated at room temperature to make intermetallic powders from metallic precursors, followed by uniaxial hot pressing at 1600°—1800°C to achieve densification. The samples were held at the hot-pressing temperatures for several hours; therefore, this study also provided qualitative phase-stability information. The solubility limit of Al for Si in MoSi2 was <5% at 1800°C. Samples that had 10% Al substituted for Si yielded approximately equal amounts of MoSi2 and Mo(Al,Si)2.  相似文献   

10.
A wet-chemical approach is applied to derive fine powders with compositions 11 mol% CeO2-ZrO2, 1 mol% YO1.5-10 mol% CeO2-ZrO2, 12 mol% CeO2-ZrO2, and 2 mol% YO1.5-10 mol% CeO2-ZrO2 by the coprecipitation method. The characteristics of the as-derived powders are evaluated through thermal analysis and electron microscopy. The sintering behavior of the calcined powders is carried out at 1400° and 1500°C for 1 to 10 h. Sintered density higher than 98% of theoretical is achieved for sintering at 1400°C for several hours. The as-sintered density dependence on the sintering condition is related to the extent of tetragonal-to-monoclinic phase transformation as well as the associated microcracks. Partial substitution by Y2O3 in CeO2-ZrO2 results in reduced grain size and tends to stabilize the tetragonal structure. Y2O3 is more effective than CeO2 with respect to the grain size refinement and tetragonal stability. In addition, Y2O3 substitution in CeO2-ZrO2 increases the hardness, while it decreases the fracture toughness.  相似文献   

11.
Active elements for humidity sensors based upon MgAl2O4 thin films or sintered pellets were investigated. Thin films were deposited on Si/SiO2 substrates by radiofrequency (rf) sputtering. Sintered MgAl2O4 pellets were prepared by traditional ceramic processing. Scanning electron microscopy (SEM) analysis showed that the thin films were rather dense and homogeneous, made up of clustered particles of about 20–30 nm, while the pellets showed a wide pore-size distribution. X-ray photoelectron spectroscopy (XPS) demonstrated that the thin films have a stoichiometry close to that of MgAl2O4. Sintered MgAl2O4 is crystalline, while it is disordered in thin-film form. The presence of two different components of the Al 2 p peaks was correlated with the structural difference between pellets and thin films. The relationship between good film–substrate adhesive properties and the chemical composition at the interface was studied. The electrical properties of the sensing elements were studied at 40°C in environments at different relative humidity (RH) values between 2% and 95%, using ac impedance spectroscopy. MgAl2O4 thin films showed interesting characteristics in terms of their use in humidity-measurement devices. Resistance versus RH sensitivity values showed variations as high as 4 orders of magnitude in the RH range tested for thin films, and 5 orders of magnitude for pellets. The differences in the electrical behavior of MgAl2O4 pellets and thin films were correlated with their different microstructures.  相似文献   

12.
La0.8Sr0.2Ga0.8Mg0.115Co0.085O3−δ (LSGMC) powders were prepared by polymeric precursor synthesis, using either polyvinyl alcohol (PVA) or citric acid (CA) as complexing agents. The powders were synthesized using different ratios between the complexing agent and the cations dissolved in solution. The obtained polymer gel precursors were dried and calcined at temperatures between 1000° and 1450°C. Single-phase LSGMC powders were obtained at a firing temperature of 1450°C, using PVA and a molar ratio between the hydroxylic groups and the total cations of 3:1. Phase-pure LSGMC powders were used to sinter (1490°C, 2 h) thick pellets. The functional properties of LSGMC pellets were assessed by electrochemical impedance spectroscopy. The electrical conductivity values and the apparent activation energies in different transport regimes were in agreement with literature data. The same LSGMC powders were deposited by electrophoretic deposition (EPD) on a green membrane containing lanthanum-doped ceria (La0.4Ce0.6O2− x , LDC), a binder, and carbon powders. The LSGMC/LDC bi-layer obtained by EPD was cofired at 1490°C for 2 h. A dense and crack-free 8-μm-thick LSGMC film supported on a porous skeleton of LDC was obtained. The combined use of proper powder synthesis and film processing routes has thus proven to be a viable way for manufacturing anode-supported LSGMC films.  相似文献   

13.
A double–inverse microemulsion (IME) process is used for synthesizing nano-sized Ba2Ti9O20 powders. The crystallization of powders thus obtained and the microwave dielectric properties of the sintered materials were examined. The IME-derived powders are of nano-size (∼21.5 nm) and possess high activity. The BaTi5O11, intermediate phase resulted when the IME-derived powders were calcined at 800°C (4 h) in air. However, high-density Ba2Ti9O20 materials with a pure triclinic phase (Hollandite like) can still be obtained by sintering such a BaTi5O11 dominated powders at 1250°C/4 h. The phase transformation kinetics for the IME-derived powders were markedly enhanced when air was replaced by O2 during the calcinations and sintering processes. Both the calcination and densification temperatures were reduced by around 50°C compared with the process undertaken in air. The microwave dielectric properties of sintered materials increase with the density of the samples, resulting in a large dielectric constant ( K ≅39) and high-quality factor ( Q × f ≅28 000 GHz) for samples possessing a density higher than 95% theoretical density, regardless of the sintering atmosphere. Overfiring dissociates Ba2Ti9O20 materials and results in a poor-quality factor.  相似文献   

14.
Foam evolution during dissolution of MnO-Mn3O4 pellets and powders in borosilicate glass was recorded photographically. The pellets were placed horizontally in transparent crucibles, covered with molten glass, and held at 1150°C. If the Mn3O4 content in pellets was more than 31 wt%, they developed foam after an initial foamless period. The length of the foamless period decreased and the duration of foaming increased as the Mn3O4 content increased. Batches prepared from MnO-Mn3O4 powders and frit, and soaked at 1150°C, foamed without an initial foamless period. The foam developed and collapsed before the set temperature was established within the melt and rose to a higher level than foam produced by pellets. Thermogravimetry of batches heated in 1 atm (∼105 Pa) of O2 shows oxidation at 400° to 600°C followed by mass loss due to volatilization and oxygen evolution.  相似文献   

15.
The ionic conductivity of the ceria-samaria (CeO2-Sm2O3) system is higher than that of yttria-stabilized zirconia and other CeO2-based oxides. In this study, a small amount of alkali-element-doped CeO2-Sm2O3 solid solution was prepared. This solid solution was characterized by measuring the powder density and the chemical composition. Moreover, its electrochemical properties were investigated in the temperature range from 700° to 1000°C. It was found that a small amount of alkali-element-doped CeO2 solid solution enhanced the ionic conductivity. The power density of an oxygen-hydrogen fuel cell for alkali-element-doped CeO2-Sm2O3 ceramics exhibited high values at low temperatures such as 700° to 800°C. It is concluded that the improved fuel cell performance can be attributed to the high stability of this composition in the fuel atmosphere.  相似文献   

16.
Cone-shaped Sm-doped CeO2 (Ce0.8Sm0.2O1.9, SDC) electrolyte cylinders have been fabricated using the slip-casting technique. A single solid oxide fuel cell has been prepared by applying a Sm0.5Sr0.5CoO3 cathode on the outside of the cylinders and a NiO–SDC (7:3 wt%) anode on the inside. The open circuit voltage of the cell was 0.93 V at 400°C, and a maximum power density of about 300 mW/cm2 at 700°C was obtained with humidified hydrogen (3% H2O) as the fuel and ambient air as the oxidant. Impedance results showed that the performance of the cell was mainly influenced by the ohmic resistance of the electrolyte.  相似文献   

17.
A possibility to produce microwave (MW) dielectric materials by liquid-phase sintering of fine particles was investigated. Zn3Nb2O8 powders with a grain size 50–300 nm were obtained by the thermal decomposition of freeze-dried Zn–Nb hydroxides or frozen oxalate solutions. The crystallization of Zn3Nb2O8 from amorphous decomposition products was often accompanied by the simultaneous formation of ZnNb2O6. Maximum sintering activity was observed for single-phase crystalline Zn3Nb2O8 powders obtained at the lowest temperature. The sintering of as-obtained powders with CuO–V2O5 sintering aids results in producing MW dielectric ceramics with a density 93%–97% of the theoretical, and a Q × f product up to 36 000 GHz at sintering temperature ( T s)≥680°C. The high level of MW dielectric properties of ceramics was ensured by intensive grain growth during the densification and the thermal processing of ceramics.  相似文献   

18.
This study examined pressure consolidation of amorphous Al2O3–15 mol% Y2O3 powders prepared by co-precipitation and spray pyrolysis. The two amorphous powders had similar true densities and crystallization sequences. Uniaxial hot pressing was carried out at 450°–600°C with a moderate pressure of 750 MPa. The co-precipitated powder could be hot pressed to a maximum relative density of 98% and remained amorphous. Pressure adversely affected the densification of the spray-pyrolyzed powder by favoring an early crystallization of γ-Al2O3 phase at 580°C. Plastic deformation of the amorphous phase is believed to be responsible for the large densification of the amorphous powders.  相似文献   

19.
Chemically homogeneous SrTiO3 powders of submicrometer size were obtained by alcohol dehydration and subsequent calcination of citrate/format solutions. Nb2O5-doped SrTiO3 was prepared with various Sr:Ti ratios resulting in an anomalous increase in the dielectric constant ( K 'up to ∼8000) for donor-doped SrO-excess SrTiO3. No semiconducting behavior was observed for donor-doped TiO2-excess SrTiO3 when fired in air. Therefore, a "brick-wall" type of microstructure was formed as a result of the excess SrO, giving rise to anomalously high dielectric constants.  相似文献   

20.
Precursor powders for high- Tc Ba2RCu4O8 (R = Y, Sm) superconductors were successfully prepared through spray-frozen/freeze-drying (SF/FD) of a mixed aqueous solution that included the respective compounds according to the stoichiometric composition. These SF/FD powders were used to obtain ceramic superconductors composed of single-phase orthorhombic Ba2RCu4O8 (R = Y, Sm) by sintering at an oxygen pressure of 1 atm. Critical temperatures measured were 84 K and 76 K for Ba2YCu4O8 and Ba2SmCu4O8, respectively, comparable to the previously reported values for these superconductors prepared under high oxygen pressure (100 atm). The present result was assumed attributable to the highly homogeneous powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号