首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Propagation formulae for M2-factor and beam wander of partially coherent electromagnetic hollow Gaussian (PCEHG) beam in non-Kolmogorov turbulence are derived based on the extended Huygens–Fresnel principle and the second-order moments of the Wigner distribution function. Our results indicate that the normalized M2-factors of PCEHG beam with larger beam order, waist width, inner scale of turbulence, the generalized exponent parameter, and smaller transverse coherent widths, outer scale of turbulence, the generalized structure parameter are less affected by the turbulence. The root mean square beam wander and relative beam wander are more obvious for PCEHG beam with smaller beam order, larger inner and outer scales of turbulence, exponent parameter, transverse coherent widths, and the generalized structure parameter. What is more, the beam wander properties of PCEHG beam in non-Kolmogorov turbulence are very different from M2-factor and spreading properties of beam in turbulence.  相似文献   

2.
Abstract

New coherent states of a harmonic oscillator in a finite-dimensional Fock space are introduced. Some properties of these coherent states are discussed. The second-order squeezing of these coherent states with respect to the quadrature operators is studied in detail. In particular, for a two-state system the arbitrary higher-order squeezing of these states is investigated. It is shown that these coherent states exhibit much richer squeezing properties than the coherent states of a usual harmonic oscillator in an infinite-dimensional Fock space. It is found that these coherent states have not only second-order squeezing but also higher-order squeezing with respect to the quadrature operators of the field under consideration.  相似文献   

3.
The beam wander of a partially coherent Airy beam in a turbulent atmosphere was investigated. By using the extended Huygens–Fresnel integral, as analytical expression is derived for the second-order moment of a partially coherent Airy beam. Based on the theory proposed by Andrews, a general expression is obtained for the beam wander of a partially coherent Airy beam. With the help of the expression, various factors which impact on the beam wander are illustrated numerically. The results show that the beam wander of a partially coherent Airy beam decreases with the increase of the characteristic scale and the decrease of the coherent length or the exponent truncation factor. The value of the beam wander is a maximum when the exponent truncation factor is 0.63, no matter what the coherent lengths are. Our results provide an effective way to control the beam wander of a partially coherent Airy beam in practice.  相似文献   

4.
Evolution properties of the complex degree of coherence of a partially coherent Laguerre–Gaussian beam (LGB) on propagation in free space and turbulent atmosphere are studied comparatively with the help of the general propagation formula for such beam. It is found that the behavior of the complex degree of coherence of a partially coherent LGB on propagation in turbulent atmosphere is much different from that in free space and is closely related to the initial beam parameters and the structure constant of the turbulent atmosphere. The distribution of the modulus of the complex degree of coherence of the partially coherent LGB finally becomes of Gaussian distribution at long propagation distance in turbulent atmosphere, and it becomes of Gaussian distribution more slowly with the increase of the mode orders, beam width and wavelength. Our results will be useful in long-distance free-space optical communications.  相似文献   

5.
Based on the generalized Huygens–Fresnel integral, propagation of partially coherent Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere was investigated. Analytical propagation formulae were derived for the cross-spectral densities of partially coherent Lorentz and Lorentz–Gauss beams. As an application example, the focusing properties of partially coherent Gaussian, Lorentz and Lorentz–Gauss beams in a turbulent atmosphere and in free space were studied numerically and comparatively. It is found that the focusing properties of such beams are closely related to the initial coherence length and the structure constant of turbulence. By choosing a suitable initial coherence length, a partially coherent Lorentz beam can be focused more tightly than a Gaussian or Lorentz–Gauss beam in free space or in a turbulent atmosphere with small structure constant at the geometrical focal plane.  相似文献   

6.
Abstract

In this paper a two-photon Jaynes-Cummings model interacting with a Kerr-like medium is studied. It is assumed that the electromagnetic field is in different states such as coherent, squeezed vacuum and pair coherent, and that the atom is initially in the excited state. The temporal evolution of the population of the excited level, and the second-order coherence function are studied. The results obtained show that this system has some similarities with the two-mode Stark system. Two photon entanglement are analysed at different initial conditions.  相似文献   

7.
Coupling properties and kurtosis parameter (K parameter) of arbitrary beams propagating through atmospheric turbulence are investigated. A correlation factor (C4-factor) is introduced to describe the influence of turbulence on coupling characteristics. The general analytical expression for C4-factor of arbitrary beams in atmospheric turbulence is derived. It is shown that C4-factor of arbitrary beams in the turbulent atmosphere depends on the initial second-order moments and fourth-order moments and turbulence quantities. Taking the partially coherent anomalous elliptical hollow Gaussian (PCAEHG) beam as an example, we can obtain that C4-factor decreases as structure constant of the refractive index fluctuations and inner scale increase, and waist width and transverse coherence length decrease when z?>?5?km. Moreover, K parameter of PCAEHG beam in turbulent atmosphere converges to 2 when propagation distance is large enough. It indicates that the profile of PCAEHG beams in turbulent atmosphere finally evolves into fundamental Gaussian distribution.  相似文献   

8.
Propagation theories of partially coherent electromagnetic fields based on coherent mode decomposition or separated-coordinate mode decomposition are proposed. With the proposed propagation theories, various powerful theories for the propagation of fully coherent electromagnetic fields can be used for the propagation of partially coherent electromagnetic fields. The proposed theories are applicable to any propagation problem of partially coherent electromagnetic fields governed by linear Maxwell equations. Some examples are provided to illustrate the validity of the proposed theories.  相似文献   

9.
In this paper, based on the nonlinear coherent states formalism and using the Hamiltonian for a single mode field in a Kerr medium, the deformed photon-added nonlinear coherent states with negative m corresponding to the nonharmonic oscillators are constructed. In addition, some of the nonclassical properties associated with these states such as the Mandel parameter, quadrature squeezing and second-order correlation function are investigated. It is found that the deformed photon-added nonlinear coherent states with negative m for the one-mode field in a Kerr medium are nonclassical states.  相似文献   

10.
11.
Conditions ensuring that the polarization properties at the output plane of a Young interferometer fed by an electromagnetic partially coherent beam are the same as those at the pinholes are derived. Such a behavior is interpreted in terms of the vector modes of the electromagnetic source corresponding to the field emerging from the Young pinholes.  相似文献   

12.
Spectral changes of a partially coherent standard or elegant Laguerre–Gaussian (LG) beam propagating in turbulent atmosphere were studied numerically. Our results show that the spectral changes of a partially coherent standard or elegant LG beam in turbulent atmosphere are determined by both the structure constant of the turbulent atmosphere and the initial beam parameters. Furthermore, it is found that a partially coherent elegant LG beam is less affected by the turbulent atmosphere than a partially coherent standard LG beam from the aspect of the on-axis spectral shift, and this advantage is enhanced for small structure constant, small beam waist size, large mode orders, and large transverse coherence length. Our results will be useful in long-distance free-space optical communications.  相似文献   

13.
A closed-form analytical expression is derived for a partially coherent dark hollow beam (DHB) propagating through an arbitrary real ABCD optical system in a turbulent atmosphere. The average intensity of the beam in the output plane is investigated in the presence of, respectively, a thin lens image system and a two-lens system along the optical path. For a special thin lens image system, the partially coherent DHB and the fully coherent DHB have the same evolution properties, and the comparative analysis is made between the propagation of the focused DHB and the collimated DHB for direct propagation in turbulence to show the effect of the thin lens on the average intensity. As for the two-lens system, the effects of the lens systems, the structure constant in the turbulent medium and the parameters of the incident beam on the average intensity are evaluated and illustrated. The result shows that different lens systems and propagation parameters can evidently affect the evolution properties of the beam.  相似文献   

14.
The second-order intensity moments and beam-propagation factor (M2 factor) of partially coherent beams have been generalized to include the case of hard-edged diffraction. A laser beam with amplitude modulation and phase fluctuation and a Gaussian Schell-model beam are taken as two typical examples of partially coherent beams. Analytical expressions for the generalized M2 factor are derived.  相似文献   

15.
Theories to calculate the propagation of arbitrary-order correlations of stationary or nonstationary partially coherent electromagnetic fields are proposed. The theories are based on separated-coordinate mode decomposition, and can make the well-developed propagation theories of fully coherent electromagnetic fields applicable to partially coherent electromagnetic fields governed by linear Maxwell equations. The validity of the theories is illustrated by an example.  相似文献   

16.
The analytical formulas for the spectrum of modified partially coherent flat-topped (MPCFT) beams propagating in a turbulent atmosphere have been derived under strong fluctuation condition of turbulence. The spectral properties of MPCFT beams propagating in a strong turbulence have been investigated, and the changes of on-axis and off-axis spectral distributions have been analyzed quantitatively. The results show that the on-axis relative spectral shift of the modified partially coherent flat-topped beam exhibits spectral switch for the beam order M > 1, and with the increasing propagation distance the blue-shift gradually decreases in atmospheric turbulence. A rapid transition for the off-axis spectrum appears at one critical position in turbulence, and the position decreases with the increasing beam order for the lower beam order and the nearer propagation distance. The spectral properties and the spectral shifts of MPCFT beams also depend on the inner scale, the spatial coherence parameter.  相似文献   

17.
Physics of cosmic radiation fields.   总被引:1,自引:0,他引:1  
This paper glances at the knowledge of composition and energy spectra of galactic cosmic rays and briefly discusses the mechanism of solar modulation and of shielding against these particles by the earth's magnetic field. A short review of the properties of solar particle events is given, in which particles emitted from the sun enter the atmosphere. Particle production in the earth's atmosphere in hadronic and electromagnetic cascades is described and the altitude variations of the different particle components are investigated. Typical energy spectra in the atmosphere are presented for some types of particles.  相似文献   

18.
Based on the extended Huygens–Fresnel principle and the second-order moments of the Wigner distribution function (WDF), the analytical expressions for the cross-spectral density (CSD) and the propagation factor of a rectangular Laguerre–Gaussian-correlated Schell-model (LGCSM) beam propagating in atmospheric turbulence are derived. The statistical properties, such as the average intensity, the spectral degree of coherence (SDOC) and the propagation factor, of a rectangular LGCSM beam in free space and atmospheric turbulence are comparatively analysed. It is illustrated that a rectangular LGCSM beam exhibits self-splitting and combing properties on propagation in atmospheric turbulence, and the self-splitting properties of such beam are closely related to its beam orders m and n, which is quite different from other self-splitting beams. In addition, the rectangular LGCSM beam has an advantage for reducing the turbulence-induced degradation compared with the conventional partially coherent beams.  相似文献   

19.
On the basis of the generalized diffraction integral formula for misaligned optical systems in the spatial domain, an analytical propagation expression for the elements of the cross-spectral density matrix of a random electromagnetic beam passing through a misaligned optical system in turbulent atmosphere is derived. Some analyses are illustrated by numerical examples relating to changes in the state of polarization of an electromagnetic Gaussian Schell-model beam propagating through such an optical system. It is shown that the misalignment has a significant influence on the intensity profile and the state of polarization of the beam, but the influence becomes smaller for the beam propagating in strong turbulent atmosphere. The method in this paper can be applied for sources that are either isotropic or anisotropic. It is shown that the isotropic sources and the anisotropic sources have different polarization properties on beam propagation.  相似文献   

20.
Based on the extended Huygens–Fresnel integral, second-order moments of the Wigner distribution function of a partially coherent radially polarized beam propagating through atmospheric turbulence are derived. Besides, propagation properties such as the mean-squared beam width, angular width, effective radius of curvature, beam propagation factor and Rayleigh range can also be obtained and calculated numerically. It is shown that the propagation properties are dependent on the spatial correlation length, refraction index structure constant and propagation distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号